College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Three point particles are fixed in place in an
xy plane. Particle A has mass mA = 5 g, particle B
has mass 2.00 mA, and particle C has mass 3.00
mA. A fourth particle D, with mass 4.00 mA, is to
be placed near the other three particles. What (a) x
coordinate and (b) y coordinate should particle D
be placed so that the net gravitational force on
particle A from particles B, C, and D is zero.
please write the step by step process on paper.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A planet of mass 5 ⨯ 1024 kg is at location <4 ⨯ 1011, −4 ⨯ 1011, 0> m. A star of mass 4 ⨯ 1030 kg is at location <−6 ⨯ 1011, 4 ⨯ 1011, 0> m. (a) What is the relative position vector pointing from the planet to the star? (b) What is the distance between the planet and the star? (c) What is the unit vector in the direction of r? (d) What is the magnitude of the force exerted on the planet by the star?(e) What is the magnitude of the force exerted on the star by the planet? (f) What is the force (vector) exerted on the planet by the star? (g) What is the force (vector) exerted on the star by the planet? (Note the change in units.)arrow_forwardThree point particles are fixed in position in an xy plane. Two of them, particle A of mass 6 g and particle B of mass 11 g, are shown in the figure with a separation of dAB = 0.555 m at angle = 30°. Particle C, with mass 7 g, is not shown. The net gravitational force acting on particle A due to particles B and C is 2.31 x 10- N at an angle of -163.8°. from the positive x axis. What are (a) the x coordinate and (b) the y coordinate of particle C? 14 B (a) Number: dAB 0 i (b) Number: i A Units: Units: < <arrow_forwardThe center of a moon of mass m is a distance D from the center of a planet of mass M. At some distance x from the center of the planet, along a line connecting the centers of planet and moon, the net force on an object will be zero. Derive an expression for x.arrow_forward
- One model for a certain planet has a core of radius R and mass M surrounded by an outer shell of inner radius R, outer radius 2R, and mass 4M. If M = 4.07 × 1024 kg and R = 5.79 x 106 m, what is the gravitational acceleration of a particle at points (a) R and (b) 3R from the center of the planet? (a) Number i Units (b) Number i Unitsarrow_forwardThree electrons are located at the vertices of an equilateral triangle with side lengths of d. The electrons at the base of the triangle are stuck in place but the electron at the top is free to move. The mass of an electron is 9.109 *10-31 kg. a) Find the distance d such that the electron located at the top or apex of the triangle is balanced by the repulsive forces of the electrons below it and the gravitational force pulling it down.arrow_forwardA hydrogen molecule consists of two hydrogen atoms whose nuclei are single protons. Find the magnitude of the repulsive force between the two protons in a hydrogen molecule whose distance apart is 7.50x10-11 m. (You may enter your result using scientific notation.)arrow_forward
- In the figure below, three point particles are fixed in place in an xy plane. Particle A has mass mA, particle B has mass 2.35mA, and particle C has mass 3.45mA. A fourth particle D, with mass 4.40mA, is to be placed near the other three particles. In terms of distance d, at what coordinates should particle D be placed so that the net gravitational force on particle A from particles B, C, and D is zero? (a) C 1.5d x coordinate d (b) y coordinate Bo A d xarrow_forwardA particle is launched from the origin on the ground with an initialvelocity? = (2.40 m/s) ? + (2.00 m/s) ?. The particle falls freely under earth’sgravitational field.arrow_forwardOne of your summer lunar space camp activities is to launch a 1090 kg rocket from the surface of the Moon. You are a serious space camper and you launch a serious rocket: it reaches an altitude of 227 km. What gain in gravitational potential energy does the launch accomplish? The mass and radius of the Moon are 7.36×10^22 kg and 1740 km, respectively.arrow_forward
- , are: Three point particles are fixed in position in an xy plane. Two of them, particle A of mass 5 g and particle B of mass 11 g, are shown in the figure with a separation of dAB = 0.519 m at angle O = 30°. Particle C, with mass 9 g, is not shown. The net gravitational force acting on particle A due to particles B and Cis 2.71 x 1014 N at an angle of -163.8°. from the positive x axis. What are (a) the x coordinate and (b) the y coordinate of particle C? В dAB Aarrow_forwardIn the figure below, a square of edge length s is formed by four spheres of masses, m1, m2, m3, and m4. What is the x component and the y component of the net gravitational force from them on a central sphere of mass m5. State your answers in terms of the given variables. ( Use any variable or symbol stated above along with the following as necessary: and G for the gravitational constant.)arrow_forwardThree point particles are fixed in position in an xy plane. Two of them, particle A of mass 5 g and particle B of mass 11 g, are shown in the figure with a separation of dAB = 0.579 m at angle = 30°. Particle C, with mass 8 g, is not shown. The net gravitational force acting on particle A due to particles B and C is 2.02 x 10-¹4 N at an angle of -163.8��. from the positive x axis. What are (a) the x coordinate and (b) the y coordinate of particle C? B dAB 0 Aarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON