College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Three electrons are located at the vertices of an equilateral triangle with side lengths of d. The electrons at the base of the triangle are stuck in place but the electron at the top is free to move. The mass of an electron is 9.109 *10-31 kg.
a) Find the distance d such that the electron located at the top or apex of the triangle is balanced by the repulsive forces of the electrons below it and the gravitational force pulling it down.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In Chapter 3 we saw that the electric forces acting between neighboring atoms behave very much like springs, with the spring stiffness being in the range of up to a few tens of Newtons per meter. Consider a molecule made up of two atoms of the same kind, each atom having a mass of 6.5 x 10-27 kg. Suppose that the center of the spring does not move, in which case you can model the motion of one of the atoms as that of a single atom connected to a half-length spring. If we should observe that a gas of these molecules emits photons whose energies are integer multiples of 2.4 x 10-2 eV, what would be the stiffness of the half-length "spring"? half-length k, = i N/marrow_forwardAn electron has an initial velocity of 3.6x104 m/s to the right. It then travels through a potential difference, which speeds the electron up to a velocity of 8.1x104 m/s to the right. a) Since the particle was traveling to the right, and sped up, what was the direction of the acceleration of the electron, left or right? b) What then must have been the direction of the force on the electron? c) And then what must have been the direction of the electric field in that area? d) Given that you know the electric field has to point from high potential to low potential, is the electron traveling from a low to a high potential, or is it traveling from a high to a low potential? e) Does that make the potential difference (the change in potential) positive, or negative?arrow_forwardThe IKAROS spacecraft, launched in 2010, was designed to test the feasibility of solar sails for spacecraft propulsion. These large, ultralight sails are pushed on by the force of light from the sun, so the spacecraft doesn’t need to carry any fuel. The force on IKAROS’s sails was measured to be 1.12 mN. If this were the only force acting on the 290 kg spacecraft, by how much would its speed increase after 6 months of flight?arrow_forward
- I need help with part c: number of revolutions made by the electronarrow_forwardIn the Bohr model of the hydrogen atom, an electron moves in a circular path around a proton. The speed of the electron is approximately 2.21 106 m/s. (a) Find the force acting on the electron as it revolves in a circular orbit of radius 0.525 ✕ 10−10 m.magnitude?(b) Find the centripetal acceleration of the electron. magnitude?arrow_forwardA particle with mass m = 10 mg travels from the origin with initial velocity = 50 through a S uniform force field ♬ = (1002 + 3007) m.N. The particle impacts a vertical screen located at a = = 10 cm. Determine the y-coordinate of the impact location, and the speed of the particle at impact. Yimpact Vimpact = cm m m Sarrow_forward
- Particles q1 = -53.0 µC, q2 = +105 µC, and q3 = -88.0 µC are in a line. Particles q1 and q2 are separated by 0.50 m and particles q2 and q3 are separated by 0.95 m. What is the net force on particle q3? Remember: Negative forces (-F) will point Left Positive forces (+F) will point Right -53.0 μ C +105 uC -88.0 µC 91 + 42 q3 E 0.50 m 0.95 m Enterarrow_forwardA hydrogen molecule consists of two hydrogen atoms whose nuclei are single protons. Find the magnitude of the repulsive force between the two protons in a hydrogen molecule whose distance apart is 7.50x10-11 m. (You may enter your result using scientific notation.)arrow_forwardA body of mass m is attracted toward a 11.1 kg mass, 31.5 cm away, with a force of magnitude 6.60 10-8 N. Find m. can you also add the units!arrow_forward
- The proton is traveling at a constant speed of 5.5 × 105 m/s, and the radius of the kissing circle is 0.02 m. The mass of a proton is 1.7 × 10-27 kg. When the proton is at location A, what are the magnitude and direction (d|p→|/dt)(p^) of the parallel component of dp→/dt?arrow_forwardIn Chapter 3 we saw that the electric forces acting between neighboring atoms behave very much like springs, with the spring stiffness being in the range of up to a few tens of Newtons per meter. Consider a molecule made up of two atoms of the same kind, each atom having a mass of 7.5 x 10-7 kg. Suppose that the center of the spring does not move, in which case you can model the motion of one of the atoms as that of a single atom connected to a half-length spring. If we should observe that a gas of these molecules emits photons whose energies are integer multiples of 2.2 x 10-2 eV, what would be the stiffness of the half-length "spring? half-length k, = N/marrow_forwardA body of mass m is attracted toward a 10.7 kg mass, 27.6 cm away, with a force of magnitude 6.72 x 10-8 N. Find m.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON