
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN: 9780133923605
Author: Robert L. Boylestad
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question

Transcribed Image Text:1. For the magnetic circuit given below, the distances constituting the mean core path are given in
'k'. There are three coils on the magnetic core. The magnitudes and the directions of the coil
currents are given in T'. Cross-sectional area and magnetic permeability of the core are constant
and uniform. Number of turns for the coils ('N') are the same. 41, d2 and d3 are the fluxes
generated by currents I,, Iz and I3, respectively.
a. Sketch the magnetic equivalent circuit of the core.
b. Give the parametrical expression for reluctances.
c. Give the parametrical expression for coil MMFS (Amper-Turn).
d. Calculate the following ratios;
$1/ P2 = ?
$2/ P3 = ?
P1/ 03 = ?
t: Please mind the winding and current directions for flux calculations.
k/2
k/2
b/4
N
N
F1
F2
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 5 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A flux of 0.0016 Wb flows in a silicon sheet steel coil/core. The arrangement appears as shown below with the following dimensions: Ac = 0.0025 m? Core/gap area: Flux path length: le = 0.350 m lg = 0.0015 m N = 500 Air gap length: Number of turns: %3D A. What is the current, I, through the winding? B. What is the energy stored in the inductance? C. Assume that the current is given by i =9.75 sin (3147) A. What is the RMS voltage that would appear across the winding? D. Assume that the gap is removed from the arrangement with the flux path remaining at 0.350 m. For a flux of 0.0016 Wb, what is the inductance of the arrangement? E. What is the energy stored in the inductance with the gap removed?arrow_forward...arrow_forward2.3arrow_forward
- w2arrow_forwardA ten-turn solenoid has a ferromagnetic core with a relative permeability of 10,000. The length of the solenoid is l=10 cm and its cross section area is A=1 cm2. The amount of current driving the solenoid is 0.1 A. Determine the magnetic flux intensity H in the core. Provide your answer in A/m. Round off to your answer to one decimal.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,