Biology: The Dynamic Science (MindTap Course List)
Biology: The Dynamic Science (MindTap Course List)
4th Edition
ISBN: 9781305389892
Author: Peter J. Russell, Paul E. Hertz, Beverly McMillan
Publisher: Cengage Learning
Question
Book Icon
Chapter 5, Problem 13TYK
Summary Introduction

To review:

The variation in the concentration of the glucose and NaCl (sodium chloride) injected into the blood.

Introduction:

Blood is the main transporting fluid in the body. Many solutes, in varying concentrations, are dissolved in blood. The osmolarity of the blood is maintained in the body by osmosis and diffusion of the water and different molecules. This osmotic balance is regulated by the homeostasis of the body. During diseased conditions, the osmotic balance of the blood is disturbed and thus solutes are injected into the body, relative to their concentration in the body.

Blurred answer
Students have asked these similar questions
Consider a suspension of particles (isoelectric point is at pH 6) in water at pH 2 and a NaCl concentration of 0.001 M. Describe how the strength of repulsion varies with the following changes, assuming all other conditions remain constant. Give a description (more than just increase or decrease) in terms of the effect on the double layer thickness and the zeta potential. (a) Change from 0.001 M NaCl to 0.1 M NaCl, (b) Change from pH = 2 to pH = 5.
Consider a uniport system where a carrier protein transports an uncharged substance A across a cell membrane. Suppose that at a certain ratio of [A]inside to [A]outside, the AG for the transport of substance A from outside the cell to the inside, Aoutside → Ainside, is -11.3 kJ/mol at 25°C. What is the ratio of the concentration of substance A inside the cell to the concentration outside? [A]inside [A]outside = Choose the true statement about the transport of A under the conditions described. Increasing [A]outside will cause AG for movement of Aoutside to Ainside to become a smaller negative number. Decreasing the concentration of the uniport protein in the membrane will cause AG to become a larger negative number. Movement of Aoutside to Ainside will be spontaneous. Because AG is negative, the ratio [A]inside/[A]outside must be greater than one.
Consider a uniport system where a carrier protein transports an uncharged substance A across a cell membrane. Suppose that at a certain ratio of [A]inside to [A]outside, the AG for the transport of substance A from outside the cell to the inside, Aoutside → Ainside, is -12.1 kJ/mol at 25°C. What is the ratio of the concentration of substance A inside the cell to the concentration outside? [A]inside [A]outside || 656275.63 Incorrect Choose the true statement about the transport of A under the conditions described. Increasing [A]outside will cause AG for movement of Aoutside to Ainside to become a smaller negative number. Decreasing the concentration of the uniport protein in the membrane will cause AG to become a larger negative number.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Human Physiology: From Cells to Systems (MindTap ...
Biology
ISBN:9781285866932
Author:Lauralee Sherwood
Publisher:Cengage Learning