Find an isomorphism from the additive group
Sec.
For an integer
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Elements Of Modern Algebra
- Find all subgroups of the quaternion group.arrow_forwardExercises 10. Find an isomorphism from the multiplicative group to the group with multiplication table in Figure . This group is known as the Klein four group. Figure Sec. 16. a. Prove that each of the following sets is a subgroup of , the general linear group of order over . Sec. 3. Let be the Klein four group with its multiplication table given in Figure . Figure Sec. 17. Show that a group of order either is cyclic or is isomorphic to the Klein four group . Sec. 16. Repeat Exercise with the quaternion group , the Klein four group , and defined byarrow_forwardFind all homomorphic images of the quaternion group.arrow_forward
- 4. Prove that the special linear group is a normal subgroup of the general linear group .arrow_forwardProve that any group with prime order is cyclic.arrow_forward27. a. Show that a cyclic group of order has a cyclic group of order as a homomorphic image. b. Show that a cyclic group of order has a cyclic group of order as a homomorphic image.arrow_forward
- 10. Prove that in Theorem , the solutions to the equations and are actually unique. Theorem 3.5: Equivalent Conditions for a Group Let be a nonempty set that is closed under an associative binary operation called multiplication. Then is a group if and only if the equations and have solutions and in for all choices of and in .arrow_forward25. Prove or disprove that every group of order is abelian.arrow_forwardProve that the Cartesian product 24 is an abelian group with respect to the binary operation of addition as defined in Example 11. (Sec. 3.4,27b, Sec. 5.1,53,) Example 11. Consider the additive groups 2 and 4. To avoid any unnecessary confusion we write [ a ]2 and [ a ]4 to designate elements in 2 and 4, respectively. The Cartesian product of 2 and 4 can be expressed as 24={ ([ a ]2,[ b ]4)[ a ]22,[ b ]44 } Sec. 3.4,27b 27. Prove or disprove that each of the following groups with addition as defined in Exercises 52 of section 3.1 is cyclic. a. 23 b. 24 Sec. 5.1,53 53. Rework Exercise 52 with the direct sum 24.arrow_forward
- Let H and K be subgroups of a group G and K a subgroup of H. If the order of G is 24 and the order of K is 3, what are all the possible orders of H?arrow_forwardExercises 30. For an arbitrary positive integer, prove that any two cyclic groups of order are isomorphic.arrow_forwardExercises 8. Find an isomorphism from the group in Example of this section to the multiplicative group . Sec. 16. Prove that each of the following sets is a subgroup of , the general linear group of order over .arrow_forward
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,