Find the multiplicative inverse of
a.
b.
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Elements Of Modern Algebra
- Let a,b,c, and d be elements of a group G. Find an expression for (abcd)1 in terms of a1,b1,c1, and d1.arrow_forwardFind the order of each of the following elements in the multiplicative group of units . for for for forarrow_forwardExercises 8. Let be an element of order in a group. Find the order of each of the following. a. b. c. d. e. f. g. h.arrow_forward
- The alternating group A4 on 4 elements is the same as the group D4 of symmetries for a square. That is. A4=D4.arrow_forwardUse mathematical induction to prove that if a1,a2,...,an are elements of a group G, then (a1a2...an)1=an1an11...a21a11. (This is the general form of the reverse order law for inverses.)arrow_forwardExercises 8. Find an isomorphism from the group in Example of this section to the multiplicative group . Sec. 16. Prove that each of the following sets is a subgroup of , the general linear group of order over .arrow_forward
- Exercises 21. Suppose is a cyclic group of order. Determine the number of generators of for each value of and list all the distinct generators of . a. b. c. d. e. f.arrow_forwardLet G1 and G2 be groups with respect to addition. Define equality and addition in the Cartesian product by G1G2 (a,b)=(a,b) if and only if a=a and b=a (a,b)+(c,d)=(ac,bd) Where indicates the addition in G1 and indicates the addition in G2. Prove that G1G2 is a group with respect to addition. Prove that G1G2 is abelian if both G1 and G2 are abelian. For notational simplicity, write (a,b)+(c,d)=(a+c,b+d) As long as it is understood that the additions in G1 and G2 may not be the same binary operations. (Sec. 3.4,27, Sec. 3.5,14,15,27,28, Sec. 3.6,12, Sec. 5.1,51) Sec. 3.4,27 Prove or disprove that each of the following groups with addition as defined in Exercises 52 of section 3.1 is cyclic. a. 23 b. 24 Sec. 3.5,14,15,27,28, Consider the additive group of real numbers. Prove or disprove that each of the following mappings : is an automorphism. Equality and addition are defined on in Exercise 52 of section 3.1. a. (x,y)=(y,x) b. (x,y)=(x,y) Consider the additive group of real numbers. Prove or disprove that each of the following mappings : is an isomorphism. a. (x,y)=x b. (x,y)=x+y Consider the additive groups 2, 3, and 6. Prove that 6 is isomorphic to 23. Let G1, G2, H1, and H2 be groups with respect to addition. If G1 is isomorphic to H1 and G2 is isomorphic to H2, prove that G1G2 is isomorphic to H1H2. Sec. 3.6,12 Consider the additive group of real numbers. Let be a mapping from to , where equality and addition are defined in Exercise 52 of Section 3.1. Prove or disprove that each of the following mappings is a homomorphism. If is a homomorphism, find ker , and decide whether is an epimorphism or a monomorphism. a. (x,y)=xy b. (x,y)=2x Sec. 5.1,51 Let R and S be arbitrary rings. In the Cartesian product RS of R and S, define (r,s)=(r,s) if and only if r=r and s=s (r1,s1)+(r2,s2)=(r1+r2,s1+s2), (r1,s1)(r2,s2)=(r1r2,s1s2). a. Prove that the Cartesian product is a ring with respect to these operations. It is called the direct sum of R and S and is denoted by RS. b. Prove that RS is commutative if both R and S are commutative. c. Prove that RS has a unity element if both R and S have unity elements. d. Give an example of rings R and S such that RS does not have a unity element.arrow_forwardExercises 10. Find an isomorphism from the multiplicative group to the group with multiplication table in Figure . This group is known as the Klein four group. Figure Sec. 16. a. Prove that each of the following sets is a subgroup of , the general linear group of order over . Sec. 3. Let be the Klein four group with its multiplication table given in Figure . Figure Sec. 17. Show that a group of order either is cyclic or is isomorphic to the Klein four group . Sec. 16. Repeat Exercise with the quaternion group , the Klein four group , and defined byarrow_forward
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,