The Cosmic Perspective (9th Edition)
The Cosmic Perspective (9th Edition)
9th Edition
ISBN: 9780134874364
Author: Jeffrey O. Bennett, Megan O. Donahue, Nicholas Schneider, Mark Voit
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter S4, Problem 55EAP

Solar Mass Black Holes. Use the formula from Problem 54 to calculate the lifetime of a black hole with the mass of the Sun  ( M Sun = 2.0 × 10 30 kg ) . How does your answer compare to the current age of the universe?

Blurred answer
Students have asked these similar questions
The mass density of our universe is measured to be about 10-29 kg/m3. If an arbitrary point is chosen as the center, how large is the radius of a spherical surface centered at the point so that the mass enclosed in the surface will become a blackhole observed by someone outside the surface? A. 4.2 trillion light years B. 420 billion light years C. 42 billion light years D. 4.2 billion light years   Is the answer D? Thanks!
What makes us think that the star system Cygnus X-1 contains a black hole? A, It emits X rays characteristic of an accretion disk, but the unseen star in the system is too massive to be a neutron star. B. No light is emitted from this star system, so it must contain a black hole. C. The fact that we see strong X-ray emission tells us that the system must contain a black hole. D.Cygnus X-1 is a powerful X-ray burster, so it must contain a black hole.
Part 1. Stellar Mass Black Holes These are the collapsed cores of massive stars which end their life in supernova explosions. The stellar core can no longer use nuclear fusion to hold up the immense gravity, and collapses until its escape velocity rises higher than the speed of light. Voila! A black hole is formed. Part A: The Schwarzschild Radius The Schwarzschild Radius is defined as: 2GM (1) = c2 where r, is the Schwarzschild radius, G is the gravitational constant, M is the mass of the black hole, and c is the speed of light. 1. Let's say we have a black hole with a mass 10 times that of the Sun (the Sun's mass is 2 x 1030 kg, so the mass of the black hole is then 2 x 1031 kg). Using the definitions for G and c, what would the Schwarzschild radius of this black hole be? 2. If the radius of the Sun is 7 x 108 m, how does the black hole's radius compare? (Divide the radius of the Sun by the Schwarzschild radius). Your answer should be in the form of times smaller/bigger than the…
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY