
Concept explainers
HOW DO YOU SEE IT? Match the description of the situation with its graph. Also determine the slope and y-intercept of each graph and interpret the slope and y-intercept in the context of the situation. [The graphs are labeled (i), (ii), (iii), and (iv).]
(a) A person is paying
(b) An employee receives
(c) A sales representative receives
(d) A computer that was purchased for

Want to see the full answer?
Check out a sample textbook solution
Chapter P Solutions
Trigonometry (MindTap Course List)
- Solve for theta 3 and 4arrow_forwardC III https://www-awu.aleks.com/alekscgi/x/Isl.exe/1o_u-IgNslkr7j8P3jH-li-WkWxK Zm85LW27IRVU66k591 O Trigonometric Functions Sketching the graph of y = a sin(x) or y = a cos(x) Graph the trigonometric function. 3 =sin.x 2 Plot all points corresponding to x-intercepts, minima, and maxima within one cycle. Then cli Explanation Check Esc F1 Search F2 #3 72 F3 4 F4 DII F5 % 5 A G F6 لarrow_forwardIf 0 = 0 = 10元 3 10元 then find exact values for the following. If the trigonometric function is undefined fo enter DNE. > 3 sec(0) equals csc(0) equals tan(0) equals cot (0) equals من Question Help: Video B من B Submit Question Jump to Answerarrow_forward
- Question 9 1 5 4 3 2 1 -8 -7 -05 -4 -3 -2 1 1 2 3 4 5 6 7 8 -1 7 -2 -3 -4 -5+ 1-6+ For the graph above, find the function of the form -tan(bx) + c f(x) =arrow_forwardQuestion 8 5 4 3 2 1 -8 -7 -6 -5/-4 -3 -2 -1, 1 2 3 4 5 6 7/8 -1 -2 -3 -4 -5 0/1 pt 3 98 C -6 For the graph above, find the function of the form f(x)=a tan(bx) where a=-1 or +1 only f(x) = = Question Help: Video Submit Question Jump to Answerarrow_forward6+ 5 -8-7-0-5/-4 -3 -2 -1, 4 3+ 2- 1 1 2 3/4 5 6 7.18 -1 -2 -3 -4 -5 -6+ For the graph above, find the function of the form f(x)=a tan(bx) where a=-1 or +1 only f(x) =arrow_forward
- Question 10 6 5 4 3 2 -π/4 π/4 π/2 -1 -2 -3- -4 -5- -6+ For the graph above, find the function of the form f(x)=a tan(bx)+c where a=-1 or +1 only f(x) = Question Help: Videoarrow_forwardThe second solution I got is incorrect. What is the correct solution? The other thrree with checkmarks are correct Question 19 Score on last try: 0.75 of 1 pts. See Details for more. Get a similar question You can retry this question below Solve 3 sin 2 for the four smallest positive solutions 0.75/1 pt 81 99 Details T= 1.393,24.666,13.393,16.606 Give your answers accurate to at least two decimal places, as a list separated by commas Question Help: Message instructor Post to forum Submit Questionarrow_forwardd₁ ≥ ≥ dn ≥ 0 with di even. di≤k(k − 1) + + min{k, di} vi=k+1 T2.5: Let d1, d2,...,d be integers such that n - 1 Prove the equivalence of the Erdos-Gallai conditions: for each k = 1, 2, ………, n and the Edge-Count Criterion: Σier di + Σjeл(n − 1 − d;) ≥ |I||J| for all I, JC [n] with In J = 0.arrow_forward
- T2.4: Let d₁arrow_forwardT2.3: Prove that there exists a connected graph with degrees d₁ ≥ d₂ >> dn if and only if d1, d2,..., dn is graphic, d ≥ 1 and di≥2n2. That is, some graph having degree sequence with these conditions is connected. Hint - Do not attempt to directly prove this using Erdos-Gallai conditions. Instead work with a realization and show that 2-switches can be used to make a connected graph with the same degree sequence. Facts that can be useful: a component (i.e., connected) with n₁ vertices and at least n₁ edges has a cycle. Note also that a 2-switch using edges from different components of a forest will not necessarily reduce the number of components. Make sure that you justify that your proof has a 2-switch that does decrease the number of components.arrow_forwardT2.2 Prove that a sequence s d₁, d₂,..., dn with n ≥ 3 of integers with 1≤d; ≤ n − 1 is the degree sequence of a connected unicyclic graph (i.e., with exactly one cycle) of order n if and only if at most n-3 terms of s are 1 and Σ di = 2n. (i) Prove it by induction along the lines of the inductive proof for trees. There will be a special case to handle when no d₂ = 1. (ii) Prove it by making use of the caterpillar construction. You may use the fact that adding an edge between 2 non-adjacent vertices of a tree creates a unicylic graph.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning





