An Introduction to Thermal Physics
An Introduction to Thermal Physics
1st Edition
ISBN: 9780201380279
Author: Daniel V. Schroeder
Publisher: Addison Wesley
Question
Book Icon
Chapter B.3, Problem 13P
To determine

To Derive: The formula for Stirling’s approximation n!=nnen2nπ[1+112n] using Taylor series.

Blurred answer
Students have asked these similar questions
Calculate the values of ⟨x3⟩v and ⟨x4⟩v for a harmonic oscillator by using the properties of the Hermite polynomials given in Table 7E.1; follow the approach used in the text.
B=re-²9, find curl(B) analytically. Compare the value of the divergence at points P1 = (x1, y1) = (0.5, 0.5) and P2 = (x2, y2) = (3, 2).
A (nonconstant) harmonic function takes its maximum value and its minimum value on the boundary of any region (not at an interior point). Thus, for example, the electrostatic potential V in a region containing no free charge takes on its largest and smallest values on the boundary of the region; similarly, the temperature T of a body containing no sources of heat takes its largest and smallest values on the surface of the body. Prove this fact (for two-dimensional regions) as follows: Suppose that it is claimed that u(x, y) takes its maximum value at some interior point a; this means that, at all points of some small disk about a, the values of u(x, y) are nolarger than at a. Show by Problem 36 that such a claim leads to a contradiction (unless u = const.). Similarly prove that u(x, y) cannot take its minimum value at an interior point.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning