An Introduction to Thermal Physics
1st Edition
ISBN: 9780201380279
Author: Daniel V. Schroeder
Publisher: Addison Wesley
expand_more
expand_more
format_list_bulleted
Question
Chapter B.2, Problem 9P
To determine
To Find:
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Answers must be expressed in engineering notation (when the exponent of the base ten multiplier is not a
multiple of 3, press ENG or SHIFT+ENG, whichever the case.)
Example: 0.06N or 6.0x10² N must be expressed to 60x10-³N or 60mN
1. Consider a beam of electrons that moves from the electron gun towards the screen of a cathode ray tube
due to the potential difference of 15kV. A pair of coils are placed outside a cathode ray tube and produce a
uniform magnetic field of 250 μT across the tube. Calculate the force experienced by the electrons if the
magnetic field is in place:
a. parallel with the direction of the beam.
b.
Perpendicular with the direction of the beam.
c. 50 degrees with the direction of the beam.
Consider the elements σ1 = (152)(34) and σ2 = (163)(45) in S6. Calculate an elementτ ∈ S6, written as a product of disjoint cycles so that σ2 = τσ1τ-1.
I know from the answers that τ=(56234) and τ-1=(65432), I just don't know how they find these answers, so if able please explain step by step in detail. Thank you in advance.
Consider the function
v(1,2) =(
[1s(1) 3s(2) + 3s(1) 1s(2)]
[x(1) B(2) + B(1) a(2)]
Which of the following statements is incorrect concerning p(1,2) ?
a.
W(1,2) is normalized.
Ob.
The function W(1,2) is symmetric with respect to the exchange of the space and the spin coordinates of the two electrons.
OC.
y(1,2) is an eigenfunction of the reference (or zero-order) Hamiltonian (in which the electron-electron repulsion term is ignored) of Li with
eigenvalue = -5 hartree.
d.
The function y(1,2) is an acceptable wave function to describe the properties of one of the excited states of Lit.
Oe.
The function 4(1,2) is an eigenfunction of the operator S,(1,2) = S;(1) + S,(2) with eigenvalue zero.
Chapter B Solutions
An Introduction to Thermal Physics
Ch. B.1 - Sketch an antiderivative of the function ex2.Ch. B.1 - Prob. 2PCh. B.1 - Prob. 3PCh. B.1 - Prob. 4PCh. B.1 - Prob. 5PCh. B.1 - Prob. 6PCh. B.2 - Prob. 7PCh. B.2 - Prob. 8PCh. B.2 - Prob. 9PCh. B.3 - Prob. 10P
Ch. B.3 - Prob. 11PCh. B.3 - Prob. 12PCh. B.3 - Prob. 13PCh. B.4 - Prob. 14PCh. B.4 - Prob. 15PCh. B.4 - Derive a formula for the volume of a d-dimensional...Ch. B.5 - Derive the general integration formulas B.36Ch. B.5 - Prob. 18PCh. B.5 - Prob. 19PCh. B.5 - Evaluate equation B.41 at x=/2, to obtain a famous...Ch. B.5 - Prob. 21PCh. B.5 - Prob. 22P
Knowledge Booster
Similar questions
- I have been able to do this with derivatives but I can't figure out how to do this with definite integralsarrow_forwardLet Ω be a new thermodynamic potential that is a “natural” function of temperature T, volume V, and the chemical potential μ. Provide a definition of Φ in the form of a Legendre transformation and also write its total differential, or derived fundamental equation, in terms of these natural variables.arrow_forward(a) Prove the "vertical angle hypothesis" (I. 15): opposing angles are congruent if two lines cut each other. (Hint: You'll need to use postulate 4 about right angles in this case.) ) (b) Complete the proof of the Exterior Angle Theorem using section (a): illustrate why beta < alphaarrow_forward
- Problem 1: This problem concerns a collection of N identical harmonic oscillators (perhaps an Einstein solid) at temperature T. The allowed energies of each oscillator are 0, hf, 2hf, and so on. a) Prove =1+x + x² + x³ + .... Ignore Schroeder's comment about proving 1-x the formula by long division. Prove it by first multiplying both sides of the equation by (1 – x), and then thinking about the right-hand side of the resulting expression. b) Evaluate the partition function for a single harmonic oscillator. Use the result of (a) to simplify your answer as much as possible. c) Use E = - дz to find an expression for the average energy of a single oscillator. z aB Simplify as much as possible. d) What is the total energy of the system of N oscillators at temperature T?arrow_forwardProblem 4.28. Thermodynamic properties of a system of harmonic oscillators (a) Show that for one oscillator 1 f = hw + kT In(1 – e¬Bhw), (4.130) Bhw k [ In(1 – e-9hw)], (4.131) S = eßhw – 1 1 + eßhw 1 e = hw5 (4.132) Equation (4.132) is Planck's formula for the mean energy of an oscillator at temperature T. The heat capacity is discussed in Problem 4.50.arrow_forwardConsider an ideal gas containing N atoms in a container of volume Pressure P, and absolute temperature T1 (not to be confused with K. E. T). Use the virtual theorem to derive the equation of state for a perfect gas.arrow_forward
- Consider the function: Z = where x = 13.36 ± 0.03 and, y = 6.27 ± 0.05 are two independent measured quantities, 1 PHY1509 PHYSICS SECTION each with its own error. Calculate the value of z and the standard error Az.arrow_forwardProblem 3.36. Consider an Einstein solid for which both N and q are much greater than 1. Think of each oscillator as a separate "particle." (a) Show that the chemical potential is N+ - kT ln N (b) Discuss this result in the limits N > q and N « q, concentrating on the question of how much S increases when another particle carrying no energy is added to the system. Does the formula make intuitive sense?arrow_forward(3.8) This question introduces a rather efficient method for calculating the mean and variance of probability distributions. We define the moment generating function M(t) for a random variable x by M(t) = (etx). Show that this definition implies that (x) = M(n) (0), (3.51) (3.52) where M(n) (t) mean (x) = d" M/dt" and further that the M (¹) (0) and the variance σ = = M(2)(0) [M(¹) (0)] 2. Hence show that: - (a) for a single Bernoulli trial, = M(t) pe 1-p; (3.53) (b) for the binomial distribution, M(t) = (pe +1 - p)"; (3.54) (c) for the Poisson distribution, M(t) = em(et-1); (3.55) (d) for the exponential distribution, λ M(t) (3.56) Hence derive the mean and variance in each case and show that they agree with the results derived earlier.arrow_forward
- Please answer completelyarrow_forwardStarting with the equation of motion of a three-dimensional isotropic harmonic ocillator dp. = -kr, dt (i = 1,2,3), deduce the conservation equation dA = 0, dt where 1 P.P, +kr,r,. 2m (Note that we will use the notations r,, r2, r, and a, y, z interchangeably, and similarly for the components of p.)arrow_forward3.2. The simulation of parameter-distributed processes is connected with discretization in space and time. The distribution of changes in the temperature x of a heated at the front massive long metal piece is described by the following partial differential equation: Əx(z,t) F x(z,t) a[x(z,t) - 0,]+b- Əz? where 0, is the ambient temperature, a and b are constants. Derive the discrete model by applying discretization first with respect to z (z; = i.Az) and after that with respect to t (tx = k.At), using backward finite differences for the corresponding derivatives.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning