Vector Mechanics For Engineers
Vector Mechanics For Engineers
12th Edition
ISBN: 9781259977305
Author: BEER, Ferdinand P. (ferdinand Pierre), Johnston, E. Russell (elwood Russell), Cornwell, Phillip J., SELF, Brian P.
Publisher: Mcgraw-hill Education,
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter B, Problem B.72P
To determine

(a)

The principal mass moment of inertia at the origin O.

Expert Solution
Check Mark

Answer to Problem B.72P

The principal mass moment of inertia at the origin O with respect to principal axis 1 is 0.1639(Wa2g).

The principal mass moment of inertia at the origin O with respect to principal axis 2 is 1.054(Wa2g).

The principal mass moment of inertia at the origin O with respect to principal axis 3 is 1.115(Wa2g).

Explanation of Solution

Given information:

The thin bent plate with uniform density, the weight of both the plates is W, the origin is O, the plate is square with dimension a unit, the centroidal axis for plate 1 is x, y, z, the centroidal axis for plate 2 is x, y, z, the perpendicular distance between the centroidal point M and y -axis is 0, the perpendicular distance between centroidal point N and x -axis is 0.

The figure below illustrate different centroidal axis.

Vector Mechanics For Engineers, Chapter B, Problem B.72P , additional homework tip  1

Figure-(1)

Write the expression for the mass of plate 1.

m1=W2g   ....(I)

Here, the weight of both the plates is W, the acceleration due to gravity is g, the mass of the plate 1 is m1.

Write the expression for the mass of plate 2.

m2=W2g   ....(II)

Here, the weight of both the plates is W, the acceleration due to gravity is g, the mass of the plate 1 is m2.

Write the expression of position vector of the line joining OA.

OA=x1i^+y1j^+z1k^   ....(III)

Here, the vector along the line joining the points O and A is OA, the unit vector along x direction is i^, the unit vector along y direction is j^, the unit vector along z direction is k^, the coordinate on x -axis is x1, the coordinate on y -axis is y1, the coordinate on z -axis is z1.

Write the expression for the magnitude of position vector OA.

|OA|=x12+y12+z12   ....(IV)

Here, the magnitude of the position vector OA is |OA|.

Write the expression for unit vector along OA.

η^OA=OA|OA|   ....(V)

Here, the unit vector along OA is η^OA.

Write the expression of mass moment of inertia of section 1 about x -axis.

(Ix)1=m1L1212+m1(L12)2   ....(VI)

Here, the mass moment of inertia of section 1 about x -axis is (Ix)1, the dimension of square plate section 1 is L1.

Write the expression of mass moment of inertia of section 2 about x -axis.

(Ix)2=m212(L22+L22)+m2((L22)2+(L22)2)   ....(VII)

Here, the mass moment of inertia of section 2 about x -axis is (Ix)2, the dimension of square plate section 2 is L2.

Write the expression of total mass moment of inertia about x -axis.

Ix=(Ix)1+(Ix)2   ....(VIII)

Here, the total mass moment of inertia about x -axis is Ix.

Write the expression of mass moment of inertia of section 1 about y -axis.

(Iy)1=m112(L12+L12)+m1((L12)2+(L12)2)   ....(IX)

Here, the mass moment of inertia of section 1 about y -axis is (Iy)1.

Write the expression of mass moment of inertia of section 2 about y -axis.

(Iy)2=m212(L22)+m2(L22+(L22)2)   ....(X)

Here, the mass moment of inertia of section 2 about y -axis is (Iy)2.

Write the expression of total mass moment of inertia about y -axis.

Iy=(Iy)1+(Iy)2   ....(XI)

Here, the total mass moment of inertia about y -axis is Iy.

Write the expression of mass moment of inertia of section 1 about z -axis.

(Iz)1=m1L1212+m1(L12)2   ....(XII)

Here, the mass moment of inertia of section 1 about z -axis is (Iz)1.

Write the expression of mass moment of inertia of section 2 about z -axis.

(Iz)2=m1L2212+m1(L2+(L22)2)   ....(XIII)

Here, the mass moment of inertia of section 2 about z -axis is (Iz)2.

Write the expression of total mass moment of inertia about z -axis.

Iz=(Iz)1+(Iz)2   ....(XIV)

Here, the total mass moment of inertia about z -axis is Iz.

From, the symmetry in above figure about x, y and z.

(I x y)1=(I y z)1=(I z x)1=0   ....(XV)

Here, the product mass moment of inertia in x - y plane is (I x y)1, the product mass moment of inertia in y - z plane is (I y z)1, the product mass moment of inertia in z - x plane is (I z x)1.

From, the symmetry in above figure about x, y and z.

(I x y)2=(I y z)2=(I z x)2=0   ....(XVI)

Write the expression for product of mass moment of inertia in x - y plane.

(Ixy)=i=1i=2((Ixy)i+mixi¯yi¯)(Ixy)=((I x y)1+m1x1¯y1¯)+((Ixy)2+m2x2¯y2¯)   ....(XVII)

Here, the product mass moment of inertia is (Ixy), the subscript limit is i, the product mass moment of inertia is (Ixy), the perpendicular distance between x -axis and x axis x1¯, the perpendicular distance between y axis and y -axis is y1¯, the perpendicular distance between x -axis and x axis x2¯, the perpendicular distance between y axis and y -axis is y2¯.

Write the expression for product mass moment of inertia in y - z plane.

(Iyz)=i=1i=2((I y z')i+miyi¯zi¯)(Iyz)=((I y z)1+m1y1¯z1¯)+((I y z)2+m2y2¯z2¯)   ....(XVIII)

Here, the product mass moment of inertia is (Iyz), the product mass moment of inertia is (Iyz), the subscript limit is i, the perpendicular distance between y axis and y -axis is y1¯, the perpendicular distance between z -axis and z -axis is z1¯, the perpendicular distance between y axis and y -axis is y2¯, the perpendicular distance between z -axis and z -axis is z2¯.

Write the expression for product mass moment of inertia in z - x plane.

(Izx)=i=1i=2((Iz' x)i+mixi¯zi¯)(Izx)=((I z x)1+m1x1¯z1¯)+((I z x)2+m2x2¯z2¯)   ....(XIX)

Here, the product mass moment of inertia in z - x plane is (Izx), the product mass moment of inertia in z - x plane is (Izx), the perpendicular distance between z -axis and z -axis is z1¯, the perpendicular distance between z -axis and z -axis is z2¯, the perpendicular distance between x -axis and x axis x1¯, the perpendicular distance between x -axis and x axis x2¯.

Write the expression of principal mass moment of inertia (K) of the thin plate.

K3[(Ix+Iy+Iz)K2+(IxIy+IyIz+IzIxIxy2Iyz2Izx2)K(IxIyIzIxIyz2IyIzx2IzIxy22IxyIyzIzx)]=0   ....(XX)

Here, the principal moment of inertia is K.

Calculation:

Substitute a for x1, a for y1, a for z1 in Equation (III).

OA=ai^+aj^+ak^

Substitute a for x1, a for y1, a for z1 in Equation (IV).

|OA|=a2+a2+a2=3a2=3a

Substitute ai^+aj^+ak^ for OA, 3a for |OA| in Equation (V).

η^OA=ai^+aj^+ak^3a=a(i^+j^+k^)3a=13i^+13j^+13k^

Substitute a for L1 in Equation (VI).

(Ix)1=m1a212+m1(a2)2=m1a212+m1a24=m1a2+3m1a212=m1a23

Substitute a for L2 in Equation (VII).

(Ix)2=m212(a2+a2)+m2((a2)2+(a22)2)=m2a26+m2a22=3m2a2+m2a26=2m2a23

Substitute m1a23 for (Ix)1, 2m2a23 for (Ix)2, W2g for m1, W2g for m2 in Equation (VIII).

Ix=Wa2(2g)3+2Wa2(2g)3=W2ga2

Substitute a for L1 in Equation (IX).

(Iy)1=m112(a2+a2)+m1((a2)2+(a2)2)=m1a26+m1a22=2m1a23

Substitute a for L2 in Equation (X).

(Iy)2=m212(a2)+m2(a2+(a2)2)=m212(a2)+5m1a24=m2a2+15m2a212=4m2a23

Substitute 2m1a23 for (Iy)1, 4m2a23 for (Iy)2, W2g for m1, W2g for m2 in Equation (XI).

Iy=2a2W(2g)3+4Wa2(2g)3=6Wa2(2g)3=Wa2g

Substitute a for L1 in Equation (XII).

(Iz)1=m1a212+m1(a2)2=m1a212+m1a24=m1a2+3m1a212=m1a23

Substitute a for L2 in Equation (XIII).

(Iz)2=m212(a2)+m2(a2+(a2)2)=m212(a2)+5m1a24=m2a2+15m2a212=4m2a23

Substitute m1a23 for (Iy)1, 4m2a23 for (Iy)2, W2g for m1, W2g for m2 in Equation (XIV).

Iz=a2W(2g)3+4Wa2(2g)3=5Wa2(2g)3=5Wa26g

Substitute 0 for (I x y)1, 0 for (I x y)2, W2g for m1, W2g for m2, 0 for y1¯, a for x2¯, a2 for x1¯, a2 for y2¯ in Equation (XVII).

(Ixy)=(0+0(W2g(a2)))+(0+W2g(a)(a2))=(0+W2g(a)(a2))=Wa24g

Substitute 0 for (I y z)1, 0 for (I y z)2, W2g for m1, W2g for m2, 0 for y1¯, a2 for z1¯, a2 for y2¯, a2 for z2¯, in Equation (XVIII).

(Iyz)=(0+W2g0(a2))+(0+W2g(a2)(a2))=W2g(a24)=Wa28g

Substitute 0 for (I z x)1, 0 for (I z x)2, W2g for m1, W2g for m2, a for x2¯, a2 for x1¯, a2 for z1¯, a2 for z2¯ in Equation (XIX).

(Izx)=(0+W2g(a2)(a2))+(0+W2g(a)(a2))=(Wa28g)+(Wa24g)=(Wa2+2Wa28g)=3Wa28g

Substitute W2ga2 for Ix, Wa2g for Iy, 5Wa26g for Iz, 3Wa28g for (Izx), Wa28g for (Iyz), Wa24g for (Ixy) in Equation (XX).

Vector Mechanics For Engineers, Chapter B, Problem B.72P , additional homework tip  2

[K3(12+1+56)(Wa2g)K2+((12(1)+(1)56+(56)+(12)(14)2(18)2(38)2))(Wa2g)2(K)((12)(1)(56)(12)(18)2(1)(38)2(56)(14)22(14)(18)(38))(Wa2g)3]=0

K3[(2.3333)(Wa2g)K2+(1.5312)(Wa2g)2(K)(0.1927)(Wa2g)3]=0

Solving above cubic Equation to get the values of K1, K2, K3.

K1=0.1639(Wa2g)K2=1.054(Wa2g)K3=1.115(Wa2g)

Conclusion:

The principal mass moment of inertia at the origin O with respect to principal axis 1 is 0.1639(Wa2g).

The principal mass moment of inertia at the origin O with respect to principal axis 2 is 1.054(Wa2g).

The principal mass moment of inertia at the origin O with respect to principal axis 3 is 1.115(Wa2g).

To determine

(b)

The determine the orientation of principal axis at origin O with respect to x -axis, y -axis and z -axis.

Expert Solution
Check Mark

Answer to Problem B.72P

The orientation of first principal axis at origin O with respect to x -axis is 36.727°.

The orientation of first principal axis at origin O with respect to y -axis is 71.604°.

The orientation of first principal axis at origin O with respect to z -axis is 59.475°.

The orientation of second principal axis at origin O with respect to x -axis is 74.896°.

The orientation of second principal axis at origin O with respect to y -axis is 54.5424°.

The orientation of second principal axis at origin O with respect to z -axis is 140.509°.

The orientation of third principal axis at origin O with respect to x -axis is 36.85°.

The orientation of third principal axis at origin O with respect to y -axis is 102.830°.

The orientation of third principal axis at origin O with respect to z -axis is 123.85°.

Explanation of Solution

The figure below represents the orientation of principal axis with respect to the Cartesian coordinates.

<x-custom-btb-me data-me-id='1725' class='microExplainerHighlight'>Vector</x-custom-btb-me> Mechanics For Engineers, Chapter B, Problem B.72P , additional homework tip  3

Figure-(1)

Write the equation of direction cosines formed by principal axes 1.

(IxK1)(λx)1Ixy(λy)1Izx(λz)1=0   ....(XXI)

(Ixy)(λx)1+(IyK1)(λy)1Iyz(λz)1=0   ....(XXII)

(λx)12+(λy)12+(λz)12=1   ....(XXIII)

Here, the principal mass moment of inertia about principal axis 1 is K1.

Write the expression of orientation of direction cosine about principal axis 1 in x -direction.

(θx)1=cos1(λx)1   ....(XXIV)

Here, the orientation of direction cosine about principal axis 1 in x -direction is (θx)1.

Write the expression of orientation of direction cosine about principal axis 2 in y -direction.

(θy)1=cos1(λy)1   ....(XXV)

Here, the orientation of direction cosine about principal axis 1 in y -direction is (θy)1.

Write the expression of orientation of direction cosine about principal axis 1 in z -direction.

(θz)1=cos1(λz)1   ....(XXVI)

Here, the orientation of direction cosine about principal axis 1 in z -direction is (θz)1.

Write the equation of direction cosines formed by principal axes 2.

(IxK2)(λx)2Ixy(λy)2Izx(λz)2=0   ....(XXVII)

(Ixy)(λx)2+(IyK2)(λy)2Iyz(λz)2=0   ....(XXVIII)

(λx)22+(λy)22+(λz)22=1   ....(XXIX)

Here, the principal mass moment of inertia about principal axis in x -direction 2 is K2.

Write the expression of orientation of direction cosine about principal axis 2 in x -direction.

(θx)2=cos1(λx)2   ....(XXX)

Here, the orientation of direction cosine about principal axis 2 is (θx)2.

Write the expression of orientation of direction cosine about principal axis 2 in y -direction.

(θy)2=cos1(λy)2   ....(XXXI)

Here, the orientation of direction cosine about principal axis 2 in y -direction is (θy)2.

Write the expression of orientation of direction cosine about principal axis 2 in z -direction.

(θz)2=cos1(λz)2   ....(XXXII)

Here, the orientation of direction cosine about principal axis 2 in z -direction is (θz)2.

Write the equation of direction cosines formed by principal axes 3.

(IxK3)(λx)3Ixy(λy)3Izx(λz)3=0   ....(XXXIII)

(Ixy)(λx)3+(IyK2)(λy)3Iyz(λz)3=0   ....(XXXIV)

(λx)32+(λy)32+(λz)32=1   ....(XXXV)

Here, the principal mass moment of inertia about principal axis 3 is K3.

Write the expression of orientation of direction cosine about principal axis 3 in x -direction.

(θx)3=cos1(λx)3   ....(XXXVI)

Here, the orientation of direction cosine about principal axis 3 in x -direction is (θx)3.

Write the expression of orientation of direction cosine about principal axis 2 in y -direction.

(θy)3=cos1(λy)3   ....(XXXVII)

Here, the orientation of direction cosine about principal axis 3 in y -direction is (θy)3.

Write the expression of orientation of direction cosine about principal axis 2 in z -direction.

(θz)3=cos1(λz)3   ....(XXXVIII)

Here, the orientation of direction cosine about principal axis 3 in z -direction is (θz)3.

Calculation:

Substitute W2ga2 for Ix, 3Wa28g for (Izx), Wa24g for (Ixy), 0.1639(Wa2g) for K1 in Equation (XXI).

(W2ga20.1639(Wa2g))(λx)1(Wa24g)(λy)1(3Wa28g)(λz)1=0(Wa2g)((0.50.1639)(λx)1(0.25)(λy)1(0.375)(λz)1)=0(0.50.1639)(λx)1(0.25)(λy)1(0.375)(λz)1=00.3361(λx)1(0.25)(λy)1(0.375)(λz)1=0

0.3361(0.25)(λx)1(λy)1(0.375)(0.25)(λz)1=01.34444(λx)1(λy)11.5(λz)1=0   ....(XXXIX)

Substitute Wga2 for Iy, Wa28g for (Iyz), Wa24g for (Ixy), 0.1639(Wa2g) for K1 in Equation (XXII).

(Wa24g)(λx)1+(Wga2(0.1639(Wa2g)))(λy)1Wa28g(λz)1=0Wga2((14)(λx)1+(λy)10.1639(λy)1(18)(λz)1)=0Wga2((0.25)(λx)1+0.8361(λy)10.125(λz)1)=0(0.25)(λx)1+0.8361(λy)10.125(λz)1=0

(0.25)0.8361(λx)1+(λy)10.1250.8361(λz)1=00.2990(λx)1+(λy)10.1495(λz)1=0   ....(XL)

Add Equation (XXXIX) and (XL).

[(1.34444(λx)1(λy)11.5(λz)1)+(0.2990(λx)1+(λy)10.1495(λz)1)]=0(1.0454(λx)11.6495(λz)1)=01.6495(λz)1=1.0454(λx)1(λz)1=1.04541.6495(λx)1

(λz)1=0.63376(λx)1   ....(XLI)

Subtract Equation (XXXIX) and (XL).

[(1.34444(λx)1(λy)11.5(λz)1)(0.2990(λx)1+(λy)10.1495(λz)1)]=0(1.6434(λx)12(λy)11.3505(λz)1)=0 …... (XLII)

Substitute 0.63376(λx)1 for (λz)1 in Equation (XLII).

(1.6434(λx)12(λy)1(1.3505)(0.63376)(λx)1)=0(1.6434(λx)12(λy)1(0.85589)(λx)1)=00.78750(λx)12(λy)1=0(λy)1=0.787502(λx)1

(λy)1=0.39375(λx)1   ....(XLIII)

Substitute 0.39375(λx)1 for (λy)1, 0.63376(λx)1 for (λz)1 in Equation (XXIII).

(λx)12+(0.39375(λx)1)2+(0.63376(λx)1)2=1(λx)12(1+(0.39375)2+(0.63376)2)=1(λx)12(1+0.155039+0.40165)=1(λx)12(1.55668)=1

(λx)12=1(1.55668)(λx)1=1(1.55668)(λx)1=0.64238(λx)1=0.80149

Substitute 0.80149 for (λx)1 in Equation (XLI).

(λz)1=(0.63376)(0.80149)(λz)1=0.5079

Substitute 0.80149 for (λx)1 in Equation (XLIII).

(λy)1=(0.39375)(0.80149)(λy)1=0.315586

Substitute 0.80149 for (λx)1 in Equation (XXIV).

(θx)1=cos1(0.80149)(θx)1=36.727°

Substitute 0.315586 for (λy)1 in Equation (XXV).

(θy)1=cos1(0.315586)(θy)1=71.604°

Substitute 0.5079 for (λz)1 in Equation (XXVI).

(θz)1=cos1(0.5079)(θz)1=59.475°

Substitute W2ga2 for Ix, 3Wa28g for (Izx), Wa24g for (Ixy), 1.054(Wa2g) for K2 in Equation (XXVII).

[((W2ga2)(1.054(Wa2g)))(λx)2(Wa24g)(λy)2(3Wa28g)(λz)2]=0(Wa2g)((0.51.054)(λx)2(0.25)(λy)2(0.375)(λz)2)=00.554(λx)20.25(λy)20.375(λz)2=00.554(λx)2+0.25(λy)2+0.375(λz)2=0

0.5540.25(λx)2+(λy)2+0.3750.25(λz)2=02.216(λx)2+(λy)2+1.5(λz)2=0   ....(XLIV)

Substitute Wga2 for Iy, Wa28g for (Iyz), Wa24g for (Ixy), 1.054(Wa2g) for K2 in Equation (XXVIII).

(Wa24g)(λx)2+((Wga2)(1.054(Wa2g)))(λy)2(Wa28g)(λz)2=0(Wga2)((0.25(λx)2)+(11.054)(λy)2(0.125)(λz)2)=00.25(λx)20.054(λy)20.125(λz)2=00.25(λx)2+0.054(λy)2+0.125(λz)2=0

0.250.054(λx)2+(λy)2+0.1250.054(λz)2=04.6296(λx)2+(λy)2+2.3148(λz)2=0   ....(XLV)

Add Equation (XLIV) and(XLV).

[(2.216(λx)2+(λy)2+1.5(λz)2)+(4.6296(λx)2+(λy)2+2.3148(λz)2)]=06.8456(λx)2+2(λy)2+3.8148(λz)2=0   ....(XLVI)

Subtract Equation (XLIV) and(XLV).

[(2.216(λx)2+(λy)2+1.5(λz)2)(4.6296(λx)2+(λy)2+2.3148(λz)2)]=02.4132(λx)2+00.8142(λz)2=00.8142(λz)2=2.4132(λx)2(λz)2=2.41320.8142(λx)2

(λz)2=2.41320.8142(λx)2(λz)2=2.9617(λx)2   ....(XLVII)

Substitute 2.9617(λx)2 for (λz)2 in Equation (XLVI).

6.8456(λx)2+2(λy)2+(3.8148)(2.9617)(λx)2=06.8456(λx)2+2(λy)211.2983(λx)2=04.452725(λx)2+2(λy)2=02(λy)2=4.452725(λx)2

(λy)2=4.4527252(λx)2(λy)2=2.22636(λx)2   ....(XLVIII)

Substitute 2.22636(λx)2 for (λy)2, 2.9617(λx)2 for (λz)2 in Equation (XXIX).

(λx)22+(2.22636(λx)2)2+(2.9617(λx)2)2=1(λx)22(1+(2.22636)2+(2.9617)2)=1(λx)22(1+4.9566+8.77166)=1(λx)22(14.7282)=1

(λx)22=1(14.7282)(λx)2=1(14.7282)(λx)2=0.26056

Substitute 0.26056 for (λx)1 in Equation (XLVII).

(λz)2=(2.9617)(0.26056)(λz)2=0.771729

Substitute 0.26056 for (λx)1 in Equation (XLVIII).

(λy)2=(2.22636)(0.26056)(λy)2=0.58010

Substitute 0.26056 for (λx)2 in Equation (XXX).

(θx)2=cos1(0.26056)(θx)2=74.896°

Substitute 0.58010 for (λy)2 in Equation (XXXI).

(θy)2=cos1(0.58010)(θy)2=54.5424°

Substitute 0.771729 for (λz)2 in Equation (XXXII).

(θz)2=cos1(0.771729)(θz)2=140.509°

Substitute W2ga2 for Ix, 3Wa28g for (Izx), Wa24g for (Ixy), 1.115(Wa2g) for K3 in Equation (XXXIII).

((W2ga2)(1.115(Wa2g)))(λx)3(Wa24g)(λy)3(3Wa28g)(λz)3=0(Wa2g)((0.51.115)(λx)30.25(λy)30.375(λz)3)=00.615(λx)30.25(λy)30.375(λz)3=00.615(λx)3+0.25(λy)3+0.375(λz)3=0

0.6150.25(λx)3+(λy)3+0.3750.25(λz)3=02.4615(λx)3+(λy)3+1.5(λz)3=0   ....(XLIX)

Substitute Wga2 for Iy, Wa28g for (Iyz), Wa24g for (Ixy), 1.115(Wa2g) for K3 in Equation (XXXIV).

(Wa24g)(λx)3+((Wga2)(1.115(Wa2g)))(λy)3(Wa28g)(λz)3=0(Wa2g)((0.25)(λx)3+(11.115)(λy)30.125(λz)3)=0(0.25)(λx)3(0.115)(λy)30.125(λz)3=00.25(λx)3+(0.115)(λy)3+0.125(λz)3=0

0.25(0.115)(λx)3+(0.115)(0.115)(λy)3+0.125(0.115)(λz)3=02.1739(λx)3+(λy)3+1.08695(λz)3=0   ....(L)

Add Equation (XLIX) and (L).

[2.4615(λx)3+(λy)3+1.5(λz)3+(2.1739(λx)3+(λy)3+1.08695(λz)3)]=04.6354(λx)3+2(λy)3+2.58695(λz)3=04.63542(λx)3+(λy)3+2.586952(λz)3=01.1781(λx)3+(λy)3+1.2934(λz)3=0   ....(LI)

Substract Equation (XLIX) and (L).

[2.4615(λx)3+(λy)3+1.5(λz)3(2.1739(λx)3+(λy)3+1.08695(λz)3)]=00.2876(λx)3+0+0.41305(λz)3=00.41305(λz)3=0.2876(λx)3(λz)3=0.2876(λx)30.41305

(λz)3=0.69628(λx)3   ....(LII)

Substitute 0.69628(λx)3 for (λz)3 in Equation (LI).

1.1781(λx)3+(λy)3+(1.2934)(0.69628(λx)3)=01.1781(λx)3+(λy)0.900563(λx)3=0(λy)3=0.27753(λx)3   ....(LIII)

Substitute 0.27753(λx)3 for (λy)3, 0.69628(λx)3 for (λz)3 in Equation (XXXV).

(λx)32+(0.27753(λx)3)2+(0.69628(λx)3)2=1(λx)32(1+0.07702+0.48480)=1(λx)32=1(1+0.07702+0.48480)(λx)3=11.5618

(λx)3=0.80017

Substitute 0.80017 for (λx)3 in Equation (LII).

(λz)3=(0.69628)(0.80017)(λz)3=0.55714

Substitute 0.80017 for (λx)3 in Equation (LIII).

(λy)3=(0.27753)(0.80017)(λy)3=0.22207

Substitute 0.80017 for (λx)3 in Equation (XXXVI).

(θx)3=cos1(0.80017)(θx)3=36.85°

Substitute 0.22207 for (λy)3 in Equation (XXXVII).

(θy)3=cos1(0.22207)(θy)3=102.830°

Substitute 0.55714 for (λz)3 in Equation (XXXVIII).

(θz)3=cos1(0.55714)(θz)3=123.85°

Conclusion:

The orientation of first principal axis at origin O with respect to x -axis is 36.727°.

The orientation of first principal axis at origin O with respect to y -axis is 71.604°.

The orientation of first principal axis at origin O with respect to z -axis is 59.475°.

The orientation of second principal axis at origin O with respect to x -axis is 74.896°.

The orientation of second principal axis at origin O with respect to y -axis is 54.5424°.

The orientation of second principal axis at origin O with respect to z -axis is 140.509°.

The orientation of third principal axis at origin O with respect to x -axis is 36.85°.

The orientation of third principal axis at origin O with respect to y -axis is 102.830°.

The orientation of third principal axis at origin O with respect to z -axis is 123.85°.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Determine the mass moment of inertia of the figure shown about the x,y, and z axis. The materials weighs 60 kN/meter cube
A thin, semielliptical plate has a mass m . Determine the mass moment of inertia of the plate with respect to (a) the centroidal axis BB, (b) the centroidal axis CC ’ that is perpendicular to the plate.
For the component described in the problem indicated, determine (a) the principal mass moments of inertia at the origin, (b) the principal axes of inertia at the origin. Sketch the body and show the orientation of the principal axes of inertia relative to the x, y, and z axes.Prob. 9.141Reference to Problem 9.141:

Chapter B Solutions

Vector Mechanics For Engineers

Ch. B - Prob. B.11PCh. B - Prob. B.12PCh. B - Determine by direct integration the mass moment of...Ch. B - Prob. B.14PCh. B - A thin, rectangular plate with a mass m is welded...Ch. B - A thin steel wire is bent into the shape shown....Ch. B - Prob. B.17PCh. B - Prob. B.18PCh. B - Prob. B.19PCh. B - Prob. B.20PCh. B - Prob. B.21PCh. B - Prob. B.22PCh. B - Prob. B.23PCh. B - Prob. B.24PCh. B - Prob. B.25PCh. B - Prob. B.26PCh. B - Prob. B.27PCh. B - Prob. B.28PCh. B - Prob. B.29PCh. B - Prob. B.30PCh. B - Prob. B.31PCh. B - Determine the mass moments of inertia and the...Ch. B - Prob. B.33PCh. B - Prob. B.34PCh. B - Prob. B.35PCh. B - Prob. B.36PCh. B - Prob. B.37PCh. B - Prob. B.38PCh. B - Prob. B.39PCh. B - Prob. B.40PCh. B - Prob. B.41PCh. B - Prob. B.42PCh. B - Prob. B.43PCh. B - Prob. B.44PCh. B - A section of sheet steel 2 mm thick is cut and...Ch. B - Prob. B.46PCh. B - Prob. B.47PCh. B - Prob. B.48PCh. B - Prob. B.49PCh. B - Prob. B.50PCh. B - Prob. B.51PCh. B - Prob. B.52PCh. B - Prob. B.53PCh. B - Prob. B.54PCh. B - Prob. B.55PCh. B - Determine the mass moment ofinertia of the steel...Ch. B - Prob. B.57PCh. B - Prob. B.58PCh. B - Determine the mass moment of inertia of the...Ch. B - Prob. B.60PCh. B - Prob. B.61PCh. B - Prob. B.62PCh. B - Prob. B.63PCh. B - Prob. B.64PCh. B - Prob. B.65PCh. B - Prob. B.66PCh. B - Prob. B.67PCh. B - Prob. B.68PCh. B - Prob. B.69PCh. B - Prob. B.70PCh. B - For the component described in the problem...Ch. B - Prob. B.72PCh. B - For the component described in the problem...Ch. B - Prob. B.74P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
moment of inertia; Author: NCERT OFFICIAL;https://www.youtube.com/watch?v=A4KhJYrt4-s;License: Standard YouTube License, CC-BY