(a)
Interpretation:
The table for the replicate measurements is given below-
A | B | C | D |
61.25 | 3.27 | 12.06 | 1.9 |
61.33 | 3.26 | 12.14 | 1.5 |
61.12 | 3.24 | 1.6 | |
3.24 | 1.4 | ||
3.28 | |||
3.23 |
The value of mean and number of degree of freedoms associated with the calculation of the mean needs to be determined.
Concept Introduction :
The mean can be calculated using the following formula:
Or
Here, degree of freedom = N
(a)
Answer to Problem A1.1QAP
For set A −
Mean = 61.43
Degree of freedom = 3
For set B −
Mean = 3.25
Degree of freedom = 6
For set C −
Mean = 12.1
Degree of freedom = 2
For set D −
Mean = 2.65
Degree of freedom = 4
Explanation of Solution
The following formula will be used for the calculation of the mean-
Or
Now the mean value for set A-
Degree of freedom for set A = 3
Mean value for set B-
Degree of freedom for set B = 6
Mean value for set C-
Degree of freedom for set C = 2
Mean value for set D −
Degree for freedom for set D = 4
(b)
Interpretation:
The table for the replicate measurements is given below-
A | B | C | D |
61.25 | 3.27 | 12.06 | 1.9 |
61.33 | 3.26 | 12.14 | 1.5 |
61.12 | 3.24 | 1.6 | |
3.24 | 1.4 | ||
3.28 | |||
3.23 |
The value of standard deviation and number of degree of freedoms associated with the calculation of the standard deviation needs to be determined.
Concept Introduction :
The value of standard deviation can be calculated as follows:
Here,
Degree of freedom =
(b)
Answer to Problem A1.1QAP
For set A −
Standard deviation = 0.11
Degree of freedom = 2
For set B −
Standard deviation = 0.02
Degree of freedom = 5
For set C −
Standard deviation = 0.06
Degree of freedom = 1
For set D −
Standard deviation = 0.21
Degree of freedom = 3
Explanation of Solution
The following formula will be used for the calculation of standard deviation −
For set A-
Samples | ||
1 | 61.25 | 3776.1025 |
2 | 61.33 | 3785.9409 |
3 | 61.12 | 3760.1424 |
Put the values,
Degree of freedom for standard deviation =
For set B-
Samples | ||
1 | 3.27 | 10.6929 |
2 | 3.26 | 10.6276 |
3 | 3.24 | 10.4976 |
4 | 3.24 | 10.4976 |
5 | 3.28 | 10.7584 |
6 | 3.23 | 10.4329 |
Put the values,
Degree of freedom for standard deviation =
For set C-
Samples | ||
1 | 12.06 | 145.4436 |
2 | 12.14 | 147.3796 |
Put the values,
Degree of freedom for standard deviation =
For set D-
Samples | ||
1 | 1.9 | 7.29 |
2 | 1.5 | 5.76 |
3 | 1.6 | 6.76 |
4 | 1.4 | 8.41 |
Put the values,
Degree of freedom for standard deviation =
(c)
Interpretation:
The table for the replicate measurements is given below-
A | B | C | D |
61.25 | 3.27 | 12.06 | 1.9 |
61.33 | 3.26 | 12.14 | 1.5 |
61.12 | 3.24 | 1.6 | |
3.24 | 1.4 | ||
3.28 | |||
3.23 |
The coefficient of variation for each set is to be determined.
Concept Introduction :
The following formula will be used for the calculation of the coefficient of variation-
Here,
s = standard deviation
(c)
Answer to Problem A1.1QAP
The coefficient of variation for set A = 0.17%
The coefficient of variation for set B = 0.61%
The coefficient of variation for set C = 0.49%
The coefficient of variation for set D = 7.9%
Explanation of Solution
For set A −
Given that-
s = 0.11
Put the above value,
For set B −
Given that-
s = 0.02
Put the above value,
For set C −
Given that-
s = 0.06
Put the above value,
For set D −
Given that-
s = 0.21
Put the above value,
(d)
Interpretation:
The table for the replicate measurements is given below-
A | B | C | D |
61.25 | 3.27 | 12.06 | 1.9 |
61.33 | 3.26 | 12.14 | 1.5 |
61.12 | 3.24 | 1.6 | |
3.24 | 1.4 | ||
3.28 | |||
3.23 |
The standard error of mean for each set is to be determined.
Concept Introduction:
The following formula will be used for the calculation of the standard error for the mean-
Here,
Standard deviation = s
Degree of freedom = N
(d)
Answer to Problem A1.1QAP
The standard error for mean for set A = 0.063
The standard error for mean for set B = 0.008
The standard error for mean for set C = 0.042
The standard error for mean for set D = 0.10
Explanation of Solution
For set A-
Given that-
Standard deviation = 0.11
Degree of freedom = 3
Put the above values,
For set B-
Given that-
Standard deviation = 0.02
Degree of freedom = 6
Put the above values,
For set C-
Given that-
Standard deviation = 0.06
Degree of freedom = 2
Put the above values,
For set D-
Given that-
Standard deviation = 0.21
Degree of freedom = 4
Put the above values,
Want to see more full solutions like this?
Chapter A1 Solutions
Principles of Instrumental Analysis
- 7 FREE RESPONSE SECTION - Show ALL work and write clearly. Circle or box your final answers to long problems! 16. (12 pts.) Name the following compounds. Be as descriptive as possible, using R/S and E/Z where needed. pricrity OH om 5 OH H H3C C-CC-CH3 OH Same sidearrow_forward1. Determine the amount of H2O2 when titrated with potassium permanganate solution 2 MnO4 (aq) + 5 H2O2(aq) + 5 H +(aq) 5 O2(g) + 2 Mn2+ (aq ) + 8 H2O(1)arrow_forward85) Provide the major organic product of the reaction shown below. H OH HO 1. Ag₂O, CHI (excess) HO- H H OH 2. H₂Ot OCH3 Answer: Harrow_forward
- Protonation reactions in metal clustersa) with multiple bonds take place on M-L bonds.b) take place on M-M bonds.c) take place on both types of bonds.arrow_forwardIndicate the correct answer.a) The H bridges in the B-H-B bonds behave as Bronsted acids.b) Boranes do not react with O2.c) None of them are correct.arrow_forwardIndicate the correct answer.a) Only the transition metals of groups 7-9 form metallic clusters.b) All transition metals form metallic clusters.c) None of the answers is correct.arrow_forward
- Indicate the correct answer.a) High nuclearity metal clusters can mimic the behavior of metal surfaces.b) The existence of M-M bonds is indisputable when bridging ligands exist in a polymetallic complex.c) Both answers are incorrect.arrow_forward1. Which of the following species will form a buffer? For the one(s) that is/are not buffers, state why they do not fit that mold. For the solution(s) that is/are buffers, find the pH. (a) 0.350 M perchloric acid with 0.300 M potassium perchlorate (b) 0.200 M hydrosulfuric acid with 0.0001 M sodium sulfite (c) 0.750 M phosphoric acid with 0.400 M lithium phosphate (d) 0.750 M phosphoric acid with 0.400 M lithium dihydrogen phosphatearrow_forwardShow work with explanation needed. Don't give Ai generated solutionarrow_forward
- Show work. don't give Ai generated solutionarrow_forward17 The water with the composition shown in the following table is to be softened. Component CO2(aq) Ca2+ Concentration mg/L 14.5 110.0 Mg2+ 50.7 Na+ 75 HCO3 350 SO 85.5 16.2 pH 8.2 (a) What is the concentration (expressed in meq/L) of magnesium carbonate hardness in the water? (b) What is the concentration (expressed in meq/L) of magnesium noncarbonate hardness in the water? (c) What concentration (expressed in meq/L) of slaked lime [Ca(OH)2] must be added to remove the carbon dioxide?arrow_forward11:47 PM Fri Dec 13 < AA ... -fleet02-xythos.content.blackboardcdn.com ⇓ Ć Lab Report A... Bb learn-us-eas... Content B learn-us-eas... 1 of 1 Alcohol Nomenclature Problems I. In these first three questions, number the parent in each. OH OH OCH3 HO II. Name these compounds according to IUPAC Nomenclature. A B OH D G J HO OH OH E ළා 52% OWLv2 | Assi... learn-us-eas... OH C OCH3 F OH LOH H I HO OH OCH3 K OCH2CH3 -OH HP OHarrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning