Calculus: An Applied Approach (MindTap Course List)
10th Edition
ISBN: 9781305860919
Author: Ron Larson
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9.3, Problem 15E
To determine
To calculate: The variance of the probability density function
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Theory-
Let uf and of be the expectation and variance of a forecast model F for an observations y, and let pf(:) denote the probability density function
for the forecast model. Also let G be a different forecast model.
Which of the following statements are true?
1. Two forecast scores S(F, y) and S(G, y) are independent
2. The squared error (y – µF)² is a proper score
3. The score (y – µf)²lof is a proper score that improves on the squared error score by taking the variance into account.
4. The logarithmic score – log[pf(y)] is a strictly proper score
Enter your answer below as a vector indicating the true statements (c(1), c(1,4) or similar).
R Code
E Start Over
Run Code
M Submit Answer
1
2
Next Topic
A restaurant serves three fixed-price dinners costing $12, $15, and $18 including tax and tip. The
joint probability mass function p(x,y) of the costs of each member of a dining pair (a host and a
guest) is shown in the table below.
Cost of guest's
dinner (y)
$12
$15
$18
Cost of
$12
0.05
0.05
0.10
host's
$15
0.05
0.10
0.30
dinner
(x)
$18
0.05
0.20
0.10
Are the dinner costs of the guest and the host independent?
O A. Yes, because p(x,y) = p(x)p(y) for all x and y is true
O B. No, because p(x,y)= p(X)p(y) for all x and y is true
O C. Yes, because p(x,y) = p(x)p(y) for all x and y is false
O D. No, because p(x,y)= p(x)p(y) for all x and y is false
Statistics CS
Chapter 9 Solutions
Calculus: An Applied Approach (MindTap Course List)
Ch. 9.1 - Checkpoint 1 Worked-out solution available at...Ch. 9.1 - Prob. 2CPCh. 9.1 - Prob. 3CPCh. 9.1 - Prob. 4CPCh. 9.1 - Prob. 5CPCh. 9.1 - Prob. 6CPCh. 9.1 - Prob. 1SWUCh. 9.1 - Prob. 2SWUCh. 9.1 - Prob. 3SWUCh. 9.1 - Prob. 4SWU
Ch. 9.1 - Prob. 5SWUCh. 9.1 - Prob. 6SWUCh. 9.1 - Prob. 7SWUCh. 9.1 - Prob. 8SWUCh. 9.1 - Prob. 9SWUCh. 9.1 - Prob. 10SWUCh. 9.1 - Prob. 1ECh. 9.1 - Prob. 2ECh. 9.1 - Prob. 3ECh. 9.1 - Prob. 4ECh. 9.1 - Prob. 5ECh. 9.1 - Prob. 6ECh. 9.1 - Prob. 7ECh. 9.1 - Random Selection A card is chosen at random from a...Ch. 9.1 - Prob. 9ECh. 9.1 - Prob. 10ECh. 9.1 - Identifying Probability Distributions In Exercises...Ch. 9.1 - Prob. 12ECh. 9.1 - Prob. 13ECh. 9.1 - Prob. 14ECh. 9.1 - Prob. 15ECh. 9.1 - Using Probability Distributions In Exercises 1518,...Ch. 9.1 - Prob. 17ECh. 9.1 - Prob. 18ECh. 9.1 - Prob. 19ECh. 9.1 - Children The table shows the probability...Ch. 9.1 - Prob. 21ECh. 9.1 - Die Roll Consider the experiment of rolling a...Ch. 9.1 - Prob. 23ECh. 9.1 - Prob. 24ECh. 9.1 - Prob. 25ECh. 9.1 - Prob. 26ECh. 9.1 - Prob. 27ECh. 9.1 - Prob. 28ECh. 9.1 - Prob. 29ECh. 9.1 - Personal Income The probability distribution of...Ch. 9.1 - Insurance An insurance company needs to determine...Ch. 9.1 - Insurance An insurance company needs to determine...Ch. 9.1 - Baseball A baseball fan examined the record of a...Ch. 9.1 - Games of Chance If x is a players net gain in a...Ch. 9.1 - Games of Chance If x is a players net gain in a...Ch. 9.1 - Prob. 37ECh. 9.1 - Prob. 38ECh. 9.2 - Prob. 1CPCh. 9.2 - Prob. 2CPCh. 9.2 - Prob. 3CPCh. 9.2 - Prob. 4CPCh. 9.2 - Prob. 5CPCh. 9.2 - Prob. 1SWUCh. 9.2 - Prob. 2SWUCh. 9.2 - Prob. 3SWUCh. 9.2 - Prob. 4SWUCh. 9.2 - Prob. 5SWUCh. 9.2 - Prob. 6SWUCh. 9.2 - Prob. 7SWUCh. 9.2 - Prob. 1ECh. 9.2 - Prob. 2ECh. 9.2 - Prob. 3ECh. 9.2 - Prob. 4ECh. 9.2 - Prob. 5ECh. 9.2 - Prob. 6ECh. 9.2 - Prob. 7ECh. 9.2 - Prob. 8ECh. 9.2 - Prob. 9ECh. 9.2 - Prob. 10ECh. 9.2 - Prob. 11ECh. 9.2 - Prob. 12ECh. 9.2 - Prob. 13ECh. 9.2 - Prob. 14ECh. 9.2 - Prob. 15ECh. 9.2 - Making a Probability Density Function In Exercises...Ch. 9.2 - Prob. 17ECh. 9.2 - Prob. 18ECh. 9.2 - Prob. 19ECh. 9.2 - Finding a Probability In Exercises 19-26, sketch...Ch. 9.2 - Prob. 21ECh. 9.2 - Prob. 22ECh. 9.2 - Prob. 23ECh. 9.2 - Prob. 24ECh. 9.2 - Prob. 25ECh. 9.2 - Finding a Probability In Exercises 19-26, sketch...Ch. 9.2 - Prob. 27ECh. 9.2 - Prob. 28ECh. 9.2 - Prob. 29ECh. 9.2 - Demand The daily demand for gasoline x (in...Ch. 9.2 - Prob. 31ECh. 9.2 - Prob. 32ECh. 9.2 - Using the Exponential Density Function In...Ch. 9.2 - Prob. 34ECh. 9.2 - Using the Exponential Density Function In...Ch. 9.2 - Prob. 36ECh. 9.2 - Prob. 37ECh. 9.2 - Demand The weekly demand x (in tons) for a certain...Ch. 9.2 - Prob. 39ECh. 9.3 - Prob. 1CPCh. 9.3 - Find the variance and standard deviation of the...Ch. 9.3 - Use a symbolic integration utility to find the...Ch. 9.3 - Prob. 4CPCh. 9.3 - Prob. 5CPCh. 9.3 - Prob. 6CPCh. 9.3 - Prob. 7CPCh. 9.3 - Prob. 1SWUCh. 9.3 - Prob. 2SWUCh. 9.3 - Prob. 3SWUCh. 9.3 - Prob. 4SWUCh. 9.3 - Prob. 5SWUCh. 9.3 - Prob. 6SWUCh. 9.3 - Finding Expected Value, Variance, and Standard...Ch. 9.3 - Prob. 2ECh. 9.3 - Prob. 3ECh. 9.3 - Prob. 4ECh. 9.3 - Finding Expected Value, Variance, and Standard...Ch. 9.3 - Prob. 6ECh. 9.3 - Prob. 7ECh. 9.3 - Prob. 8ECh. 9.3 - Prob. 9ECh. 9.3 - Prob. 10ECh. 9.3 - Prob. 11ECh. 9.3 - Finding Expected Value, Variance, and Standard...Ch. 9.3 - Prob. 13ECh. 9.3 - Using Two Methods In Exercises 13-16, find the...Ch. 9.3 - Prob. 15ECh. 9.3 - Using two Methods In Exercises 1316, find the...Ch. 9.3 - Using Technology In Exercises 17-22, use a...Ch. 9.3 - Using Technology In Exercises 17-22, use a...Ch. 9.3 - Using Technology In Exercises 17-22, use a...Ch. 9.3 - Using Technology In Exercises 17-22, use a...Ch. 9.3 - Prob. 21ECh. 9.3 - Prob. 22ECh. 9.3 - Prob. 23ECh. 9.3 - Prob. 24ECh. 9.3 - Prob. 25ECh. 9.3 - Prob. 26ECh. 9.3 - Prob. 27ECh. 9.3 - Prob. 28ECh. 9.3 - Prob. 29ECh. 9.3 - Prob. 30ECh. 9.3 - Prob. 31ECh. 9.3 - Prob. 32ECh. 9.3 - Prob. 33ECh. 9.3 - Prob. 34ECh. 9.3 - Prob. 35ECh. 9.3 - Prob. 36ECh. 9.3 - Consumer Trends The number of coupons x used by a...Ch. 9.3 - Prob. 38ECh. 9.3 - Prob. 39ECh. 9.3 - Prob. 40ECh. 9.3 - Transportation The arrival time t (in minutes) of...Ch. 9.3 - Prob. 42ECh. 9.3 - Prob. 43ECh. 9.3 - Prob. 44ECh. 9.3 - Prob. 45ECh. 9.3 - License Renewal The waiting time t (in minutes) at...Ch. 9.3 - Demand The daily demand x for a certain product...Ch. 9.3 - Prob. 48ECh. 9.3 - Demand The daily demand x for water (in millions...Ch. 9.3 - Prob. 50ECh. 9.3 - Prob. 54ECh. 9.3 - Prob. 55ECh. 9.3 - Education For high school graduates from 2012...Ch. 9.3 - Prob. 57ECh. 9 - Prob. 1RECh. 9 - Prob. 2RECh. 9 - Prob. 3RECh. 9 - Prob. 4RECh. 9 - Prob. 5RECh. 9 - Prob. 6RECh. 9 - Prob. 7RECh. 9 - Prob. 8RECh. 9 - Prob. 9RECh. 9 - Prob. 10RECh. 9 - Prob. 11RECh. 9 - Prob. 12RECh. 9 - Prob. 13RECh. 9 - Prob. 14RECh. 9 - Prob. 15RECh. 9 - Prob. 16RECh. 9 - Revenue A publishing company introduces a new...Ch. 9 - Prob. 18RECh. 9 - Prob. 19RECh. 9 - Prob. 20RECh. 9 - Prob. 21RECh. 9 - Prob. 22RECh. 9 - Prob. 23RECh. 9 - Prob. 24RECh. 9 - Prob. 25RECh. 9 - Prob. 26RECh. 9 - Prob. 27RECh. 9 - Prob. 28RECh. 9 - Prob. 29RECh. 9 - Prob. 30RECh. 9 - Prob. 31RECh. 9 - Prob. 32RECh. 9 - Prob. 33RECh. 9 - Prob. 34RECh. 9 - Prob. 35RECh. 9 - Prob. 36RECh. 9 - Waiting Time The waiting time t (in minutes) for...Ch. 9 - Prob. 38RECh. 9 - Prob. 39RECh. 9 - Prob. 40RECh. 9 - Prob. 41RECh. 9 - Prob. 42RECh. 9 - Prob. 43RECh. 9 - Prob. 44RECh. 9 - Prob. 45RECh. 9 - Prob. 46RECh. 9 - Prob. 47RECh. 9 - Prob. 48RECh. 9 - Prob. 49RECh. 9 - Prob. 50RECh. 9 - Prob. 51RECh. 9 - Prob. 52RECh. 9 - Prob. 53RECh. 9 - Prob. 54RECh. 9 - Prob. 55RECh. 9 - Prob. 56RECh. 9 - Prob. 57RECh. 9 - Prob. 58RECh. 9 - Prob. 59RECh. 9 - Prob. 60RECh. 9 - Prob. 61RECh. 9 - Prob. 62RECh. 9 - Prob. 1TYSCh. 9 - Prob. 2TYSCh. 9 - Prob. 3TYSCh. 9 - Prob. 4TYSCh. 9 - Prob. 5TYSCh. 9 - Prob. 6TYSCh. 9 - Prob. 7TYSCh. 9 - Prob. 8TYSCh. 9 - Prob. 9TYSCh. 9 - Prob. 10TYSCh. 9 - Prob. 11TYSCh. 9 - Prob. 12TYSCh. 9 - Prob. 13TYSCh. 9 - Prob. 14TYSCh. 9 - Prob. 15TYSCh. 9 - Prob. 16TYS
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Population Genetics In the study of population genetics, an important measure of inbreeding is the proportion of homozygous genotypesthat is, instances in which the two alleles carried at a particular site on an individuals chromosomes are both the same. For population in which blood-related individual mate, them is a higher than expected frequency of homozygous individuals. Examples of such populations include endangered or rare species, selectively bred breeds, and isolated populations. in general. the frequency of homozygous children from mating of blood-related parents is greater than that for children from unrelated parents Measured over a large number of generations, the proportion of heterozygous genotypesthat is, nonhomozygous genotypeschanges by a constant factor 1 from generation to generation. The factor 1 is a number between 0 and 1. If 1=0.75, for example then the proportion of heterozygous individuals in the population decreases by 25 in each generation In this case, after 10 generations, the proportion of heterozygous individuals in the population decreases by 94.37, since 0.7510=0.0563, or 5.63. In other words, 94.37 of the population is homozygous. For specific types of matings, the proportion of heterozygous genotypes can be related to that of previous generations and is found from an equation. For mating between siblings 1 can be determined as the largest value of for which 2=12+14. This equation comes from carefully accounting for the genotypes for the present generation the 2 term in terms of those previous two generations represented by for the parents generation and by the constant term of the grandparents generation. a Find both solutions to the quadratic equation above and identify which is 1 use a horizontal span of 1 to 1 in this exercise and the following exercise. b After 5 generations, what proportion of the population will be homozygous? c After 20 generations, what proportion of the population will be homozygous?arrow_forwardPart Garrow_forwardLet X be a discrete random variable that is the value shown on a single roll of a fair die. (a) What is the expected value of X? Explain the meaning of E(X) in this case. (b) Find the expected value of X². (c) Find the variance of X. (a) (b) (c)arrow_forward
- Mutual Funds The price per share (in dollars) of a particu- lar mutual fund is a random variable x with probability density function defined by 3 f(x) = (x? - 16x + 65) for x in [8, 9]. (a) Find the probability that the price will be less than $8.50. (b) Find the expected value of the price. (c) Find the standard deviation.arrow_forwardStatistics for CSarrow_forwardUsing the pdf file f (x) x | A; Find the expected value and the variance of the random variable Y, since the random variable Y is defined as Y = 2X + 0.2.arrow_forward
- Three zero mean, unit variance random variables X, Y, and Z are added to form a new random variable, W = X + Y + Z. Random variables X and Y are uncorrelated, X and Z have a correlation coefficient of 1/2, and Y and Z have a correlation coefficient of - 1/2. a) Find the variance of W. b) Find the correlation coefficient between W and X. c) Find the correlation coefficient between W and the sum of Y and Z.arrow_forward2 Understanding the central limit theorem Explain how the central limit theorem (WMS Theorem 7.4) can be used to show the following useful facts. If X1.., X, are IID random variables with mean u and variance a?, then E X; is approximately normal with mean iu and variance no, and X = X; is approximately normal with mean a and variance a2 /n, as n gets large.arrow_forward[Regression Analysis] How do you solve this question? Thank you!arrow_forward
- Correlation Coefficient - sample Let X₁, X2, and X3 be uncorrelated random variables with common variance o². Find the correlation coefficient between X₁ + X2 and X₂ − X3.arrow_forwardThe function f (x) = xc², x = 1, -1, 2, -2, 3, -3In order for the random variable X to be a probability functionWhat should be the constant c. Find the distribution function, expected value, and variance of the random variable X.arrow_forwardDiscrete Random Variables Consider the experiment of throwing 2 dice and define Y as the V.A that records the sum of the results. records the sum of the outcomes. Find the probability function fY(y), the expected value E(Y ), the variance V ar(Y ), and the cumulative expected value E(Y ), the variance V ar(Y ), and the cumulative distribution function FY(y)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Continuous Probability Distributions - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=QxqxdQ_g2uw;License: Standard YouTube License, CC-BY
Probability Density Function (p.d.f.) Finding k (Part 1) | ExamSolutions; Author: ExamSolutions;https://www.youtube.com/watch?v=RsuS2ehsTDM;License: Standard YouTube License, CC-BY
Find the value of k so that the Function is a Probability Density Function; Author: The Math Sorcerer;https://www.youtube.com/watch?v=QqoCZWrVnbA;License: Standard Youtube License