EBK THERMODYNAMICS: AN ENGINEERING APPR
9th Edition
ISBN: 8220106796979
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Question
Chapter 9.12, Problem 177RP
To determine
The specific impulse of the jet engine.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A turboprop aircraft propulsion engine operates where the air is at 8 psia and −10°F, on an aircraft flying at a speed of 600 ft/s. The Brayton cycle pressure ratio is 10, and the air temperature at the turbine inlet is 940°F. The propeller diameter is 10 ft and the mass flow rate through the propeller is 20 times that through the compressor. Determine the thrust force generated by this propulsion system. Assume ideal operation for all components and constant specific heats at room temperature.
In an air-standard Brayton cycle the air enters the compressor at 0.1 MPa and 15°C. The pressure leaving the compressor is 1.0 MPa, and the maximum temperature in the cycle is 1100°C. Determine the pressure and temperature at each point in the cycle and the compressor work, turbine work, and cycle efficiency. For each of the control volumes analyzed, the model is ideal gas with constant specific heat, at 300 K, and each process is steady state with no kinetic or potential energy changes
TT5
Chapter 9 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 9.12 - What are the air-standard assumptions?Ch. 9.12 - What is the difference between air-standard...Ch. 9.12 - Prob. 3PCh. 9.12 - How does the thermal efficiency of an ideal cycle,...Ch. 9.12 - How are the combustion and exhaust processes...Ch. 9.12 - What does the area enclosed by the cycle represent...Ch. 9.12 - Prob. 7PCh. 9.12 - Can the mean effective pressure of an automobile...Ch. 9.12 - What is the difference between spark-ignition and...Ch. 9.12 - Prob. 10P
Ch. 9.12 - Prob. 11PCh. 9.12 - Can any ideal gas power cycle have a thermal...Ch. 9.12 - Prob. 13PCh. 9.12 - Prob. 14PCh. 9.12 - Prob. 15PCh. 9.12 - Prob. 16PCh. 9.12 - Prob. 17PCh. 9.12 - Prob. 18PCh. 9.12 - Prob. 19PCh. 9.12 - Repeat Prob. 919 using helium as the working...Ch. 9.12 - The thermal energy reservoirs of an ideal gas...Ch. 9.12 - Consider a Carnot cycle executed in a closed...Ch. 9.12 - Consider a Carnot cycle executed in a closed...Ch. 9.12 - What four processes make up the ideal Otto cycle?Ch. 9.12 - Are the processes that make up the Otto cycle...Ch. 9.12 - How do the efficiencies of the ideal Otto cycle...Ch. 9.12 - How does the thermal efficiency of an ideal Otto...Ch. 9.12 - Why are high compression ratios not used in...Ch. 9.12 - An ideal Otto cycle with a specified compression...Ch. 9.12 - Prob. 30PCh. 9.12 - Prob. 31PCh. 9.12 - Determine the mean effective pressure of an ideal...Ch. 9.12 - Reconsider Prob. 932E. Determine the rate of heat...Ch. 9.12 - An ideal Otto cycle has a compression ratio of 8....Ch. 9.12 - Prob. 36PCh. 9.12 - A spark-ignition engine has a compression ratio of...Ch. 9.12 - An ideal Otto cycle has a compression ratio of 7....Ch. 9.12 - Prob. 39PCh. 9.12 - An ideal Otto cycle with air as the working fluid...Ch. 9.12 - Repeat Prob. 940E using argon as the working...Ch. 9.12 - Someone has suggested that the air-standard Otto...Ch. 9.12 - Repeat Prob. 942 when isentropic processes are...Ch. 9.12 - Prob. 44PCh. 9.12 - Prob. 45PCh. 9.12 - Prob. 46PCh. 9.12 - Prob. 47PCh. 9.12 - Prob. 48PCh. 9.12 - Prob. 49PCh. 9.12 - Prob. 50PCh. 9.12 - Prob. 51PCh. 9.12 - Prob. 52PCh. 9.12 - Prob. 53PCh. 9.12 - Prob. 54PCh. 9.12 - Prob. 55PCh. 9.12 - Prob. 56PCh. 9.12 - Prob. 57PCh. 9.12 - Repeat Prob. 957, but replace the isentropic...Ch. 9.12 - Prob. 60PCh. 9.12 - Prob. 61PCh. 9.12 - The compression ratio of an ideal dual cycle is...Ch. 9.12 - Repeat Prob. 962 using constant specific heats at...Ch. 9.12 - Prob. 65PCh. 9.12 - Prob. 66PCh. 9.12 - Prob. 67PCh. 9.12 - An air-standard cycle, called the dual cycle, with...Ch. 9.12 - Prob. 69PCh. 9.12 - Prob. 70PCh. 9.12 - Consider the ideal Otto, Stirling, and Carnot...Ch. 9.12 - Consider the ideal Diesel, Ericsson, and Carnot...Ch. 9.12 - An ideal Ericsson engine using helium as the...Ch. 9.12 - An ideal Stirling engine using helium as the...Ch. 9.12 - Prob. 75PCh. 9.12 - Prob. 76PCh. 9.12 - Prob. 77PCh. 9.12 - Prob. 78PCh. 9.12 - Prob. 79PCh. 9.12 - For fixed maximum and minimum temperatures, what...Ch. 9.12 - What is the back work ratio? What are typical back...Ch. 9.12 - Why are the back work ratios relatively high in...Ch. 9.12 - How do the inefficiencies of the turbine and the...Ch. 9.12 - A simple ideal Brayton cycle with air as the...Ch. 9.12 - A stationary gas-turbine power plant operates on a...Ch. 9.12 - A gas-turbine power plant operates on the simple...Ch. 9.12 - Prob. 87PCh. 9.12 - Prob. 88PCh. 9.12 - Repeat Prob. 988 when the isentropic efficiency of...Ch. 9.12 - Repeat Prob. 988 when the isentropic efficiency of...Ch. 9.12 - Repeat Prob. 988 when the isentropic efficiencies...Ch. 9.12 - Air is used as the working fluid in a simple ideal...Ch. 9.12 - An aircraft engine operates on a simple ideal...Ch. 9.12 - Repeat Prob. 993 for a pressure ratio of 15.Ch. 9.12 - A gas-turbine power plant operates on the simple...Ch. 9.12 - A simple ideal Brayton cycle uses argon as the...Ch. 9.12 - A gas-turbine power plant operates on a modified...Ch. 9.12 - A gas-turbine power plant operating on the simple...Ch. 9.12 - Prob. 99PCh. 9.12 - Prob. 100PCh. 9.12 - Prob. 101PCh. 9.12 - Prob. 102PCh. 9.12 - Prob. 103PCh. 9.12 - Prob. 104PCh. 9.12 - A gas turbine for an automobile is designed with a...Ch. 9.12 - Rework Prob. 9105 when the compressor isentropic...Ch. 9.12 - A gas-turbine engine operates on the ideal Brayton...Ch. 9.12 - An ideal regenerator (T3 = T5) is added to a...Ch. 9.12 - Prob. 109PCh. 9.12 - Prob. 111PCh. 9.12 - A Brayton cycle with regeneration using air as the...Ch. 9.12 - Prob. 113PCh. 9.12 - Prob. 114PCh. 9.12 - Prob. 115PCh. 9.12 - Prob. 116PCh. 9.12 - Prob. 117PCh. 9.12 - Prob. 118PCh. 9.12 - Prob. 119PCh. 9.12 - Prob. 120PCh. 9.12 - A simple ideal Brayton cycle without regeneration...Ch. 9.12 - A simple ideal Brayton cycle is modified to...Ch. 9.12 - Consider a regenerative gas-turbine power plant...Ch. 9.12 - Repeat Prob. 9123 using argon as the working...Ch. 9.12 - Consider an ideal gas-turbine cycle with two...Ch. 9.12 - Repeat Prob. 9125, assuming an efficiency of 86...Ch. 9.12 - A gas turbine operates with a regenerator and two...Ch. 9.12 - Prob. 128PCh. 9.12 - Prob. 129PCh. 9.12 - Prob. 130PCh. 9.12 - Prob. 131PCh. 9.12 - Air at 7C enters a turbojet engine at a rate of 16...Ch. 9.12 - Prob. 133PCh. 9.12 - A turbojet is flying with a velocity of 900 ft/s...Ch. 9.12 - A pure jet engine propels an aircraft at 240 m/s...Ch. 9.12 - A turbojet aircraft is flying with a velocity of...Ch. 9.12 - Prob. 137PCh. 9.12 - Prob. 138PCh. 9.12 - Reconsider Prob. 9138E. How much change would...Ch. 9.12 - Consider an aircraft powered by a turbojet engine...Ch. 9.12 - An ideal Otto cycle has a compression ratio of 8....Ch. 9.12 - An air-standard Diesel cycle has a compression...Ch. 9.12 - Prob. 144PCh. 9.12 - Prob. 145PCh. 9.12 - Prob. 146PCh. 9.12 - Prob. 147PCh. 9.12 - A Brayton cycle with regeneration using air as the...Ch. 9.12 - Prob. 150PCh. 9.12 - A gas turbine operates with a regenerator and two...Ch. 9.12 - A gas-turbine power plant operates on the...Ch. 9.12 - Prob. 153PCh. 9.12 - An air-standard cycle with variable specific heats...Ch. 9.12 - Prob. 155RPCh. 9.12 - Prob. 156RPCh. 9.12 - Prob. 157RPCh. 9.12 - Prob. 158RPCh. 9.12 - Prob. 159RPCh. 9.12 - Prob. 160RPCh. 9.12 - Prob. 161RPCh. 9.12 - Consider an engine operating on the ideal Diesel...Ch. 9.12 - Repeat Prob. 9162 using argon as the working...Ch. 9.12 - Prob. 164RPCh. 9.12 - Prob. 165RPCh. 9.12 - Prob. 166RPCh. 9.12 - Prob. 167RPCh. 9.12 - Consider an ideal Stirling cycle using air as the...Ch. 9.12 - Prob. 169RPCh. 9.12 - Consider a simple ideal Brayton cycle with air as...Ch. 9.12 - Prob. 171RPCh. 9.12 - A Brayton cycle with a pressure ratio of 15...Ch. 9.12 - Helium is used as the working fluid in a Brayton...Ch. 9.12 - Consider an ideal gas-turbine cycle with one stage...Ch. 9.12 - Prob. 176RPCh. 9.12 - Prob. 177RPCh. 9.12 - Prob. 180RPCh. 9.12 - Prob. 181RPCh. 9.12 - Prob. 182RPCh. 9.12 - For specified limits for the maximum and minimum...Ch. 9.12 - A Carnot cycle operates between the temperature...Ch. 9.12 - Prob. 194FEPCh. 9.12 - Prob. 195FEPCh. 9.12 - Helium gas in an ideal Otto cycle is compressed...Ch. 9.12 - Prob. 197FEPCh. 9.12 - Prob. 198FEPCh. 9.12 - In an ideal Brayton cycle, air is compressed from...Ch. 9.12 - In an ideal Brayton cycle, air is compressed from...Ch. 9.12 - Consider an ideal Brayton cycle executed between...Ch. 9.12 - An ideal Brayton cycle has a net work output of...Ch. 9.12 - In an ideal Brayton cycle with regeneration, argon...Ch. 9.12 - In an ideal Brayton cycle with regeneration, air...Ch. 9.12 - Consider a gas turbine that has a pressure ratio...Ch. 9.12 - An ideal gas turbine cycle with many stages of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The initial pressure and temperature of air in an Otto cycle engine during compression are 90 kPa and 12°C. Determine the maximum pressure occurring in the cycle if the initial and final temperature during heat addition process are 350°C and 1250°C, and the compression ratio is 6. Please complete the answer for good feedback.?arrow_forwardAn air standard gas turbine engine operates on an overall pressure ratio of 4 and between the temperature limits of 70 F and 1600 F. Assuming constant specific heats, evaluate the compressor work. The efficiencies of compressor and turbine are 0.82 and 0.92, respectively. (a) Assuming constant specific heats, evaluate the compressor work. (b) determine the turbine work (c) determine the thermal efficiencies. Show complete solution on a paper.arrow_forwardA 10-stage compressor delivers 26 kg/s of air. The inlet pressure and temperature are 100 kPaa and 77°F, respectively. The discharge pressure is 13.80 bar. Intercooler is installed after each stage. Determine the 6th intercooler pressure in kPa.arrow_forward
- Please solve the ff.arrow_forwardA turbojet-powered aircraft is flying at 220 m/s and 8000-m altitude, where the ambient temperature and pressure are 236K and 35kPa, respectively.The pressure ratio of the compressor is 6 and the turbine inlet temperaturer is 970k. Estimate the thrust developed by the engine when the air flow rate is 55kg/s. employ an air standard-cycle analysis using the constant-pressurree specific heat c_p and specific heat ratio γ for air and neglecting the fuel properties.arrow_forwardAir at 7°C enters a turbojet engine at a rate of 16 kg/s and at a velocity of 220 m/s (relative to the engine). Air is heated in the combustion chamber at a rate 15,000 kJ/s, and it leaves the engine at 427°C. Determine the thrust produced by this turbojet engine. (Hint: Choose the entire engine as your control volume.)arrow_forward
- Question attachedarrow_forwardAn air-standard Diesel cycle has a maximum temperature of 1800 K. At the beginning of compression, p1 = 95 kPa and Tq = 300 K. The mass of airis 12 g. For a compression ratio of 15, determine (a) the net work of the cycle, in kJ. (b) the thermal efficiency. (c) the mean effective pressure, in kPa.arrow_forwardA turboshaft engine comprising a gas generator and a free power turbine is selected to provide propulsive power for a helicopter. The helicopter is hovering in ISA conditions at an altitude of 4100 feet. The following data applies to this engine at this static max power operating point. Intake mass flow: 8.9 kg/s Compressor pressure ratio: 24.5 Compressor isentropic efficiency: 88% Mechanical efficiency: (HP & PT shaft) 99% Combustion chamber pressure loss Combustion chamber inlet pressure 4% Combustion efficiency 98.8% Combustion chamber exit temperature: 1585K Gas generator turbine isentropic efficiency: 92% Power turbine isentropic efficiency: 90% The effects of the intake and exhaust ducts may be ignored. It may be assumed that for: Air: Cp = 1.005 kJ/kg • K, y = 1.4, R = 0.287 kJ/kg • K Combustion gases: Cp = 1.148kJ/kg • K, y = 1.333, R = 0.287 kJ/kg • K A 6% direct bleed of air from the exit of the compressor is…arrow_forward
- A turboshaft engine comprising a gas generator and a free power turbine is selected to provide propulsive power for a helicopter. The helicopter is hovering in ISA conditions at an altitude of 4100 feet. The following data applies to this engine at this static max power operating point. Intake mass flow: 8.9 kg/s Compressor pressure ratio: 24.5 Compressor isentropic efficiency: 88% Mechanical efficiency: (HP & PT shaft) 99% Combustion chamber pressure loss Combustion chamber inlet pressure 4% Combustion efficiency 98.8% Combustion chamber exit temperature: 1585K Gas generator turbine isentropic efficiency: 92% Power turbine isentropic efficiency: 90% The effects of the intake and exhaust ducts may be ignored. It may be assumed that for: Air: Cp = 1.005 kJ/kg • K, y = 1.4, R = 0.287 kJ/kg • K Combustion gases: Cp = 1.148kJ/kg • K, y = 1.333, R = 0.287 kJ/kg • K A 6% direct bleed of air from the exit of the compressor is…arrow_forwardA gasoline engine that operates in an air-standard Otto cycle has a total displacement volume 0.95 ft3 running at 2250 RPM, and a clearance volume of 15%. A 715 BTU/lbm of heat is added at constant volume. The initial conditions of air prior to the compression are 80oF and 14.5 psia. COnsidering variations of heat at given temperatures, determine the maximum pressure and temperature in the cycle, the work net, the total power in hP, and the thermal efficiency of the cycle. Draw the P-V and T-S diagram.arrow_forwardA gas-turbine engine with regeneration operates with two stages of compression and two stages of expansion. The pressure ratio across each stage of the compressor and the turbine is 3.5. The air enters each stage of the compressor at 300 K and each stage of the turbine at 1250 K. The compressor and the turbine efficiencies are 80% and 82%, respectively, and the effectiveness of the regenerator is 74%. Assuming variable specific heats for air; show the process in a T-s diagram; calculate the back work ratio; and determine the thermal efficiency of the cycle.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY