CHEMISRTY:ATOMS FIRST ACCESS CARD ONLY
3rd Edition
ISBN: 9781260324761
Author: Burdge
Publisher: INTER MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 9.90QP
Which best represents the before-and-after molecular-level view of the dilution of a concentrated stock solution?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(c) What is a standard solution? What piece of glassware is used to prepare a standard solution and
describe how a standard solution of sodium carbonate may be prepared in the laboratory?
Materials Needed
solid I2
solid CUSO4-5H20
food dye
solid (NH4)2SO4
heavy metals waste container
halogenated waste container
non-halogenated waste container
semi-micro test tubes and rack
regular test tubes and rack
squash pipettes
acetone
cyclohexane
propan-2-ol
Method
Part A: Solubility of ionic and molecular solids
1.
Place a small amount (about the size of 1 grain of rice, see picture) of copper sulfate into each of three DRY
semi-micro test tubes. Add 20 drops of water to the first test tube and gently flick the test tube with your
finger to ensure mixing.
2.
Repeat step 1 using acetone in place of water as the solvent in the second test tube.
3.
Repeat step 2 replacing acetone with cyclohexane in the third test tube.
Hold the test tubes against a white background to compare the solubility of copper sulfate in the three solvents
and record your results. Discard these mixtures into the heavy metals waste container in the fume cupboard.
Once these test tubes have been emptied you…
How do we keep relative supersaturation low by controlling solute concentration?
concentration should be constant
concentration should be higher
concentration should be lower
concentration should be fluctuating
Chapter 9 Solutions
CHEMISRTY:ATOMS FIRST ACCESS CARD ONLY
Ch. 9.1 - Sports drinks typically contain sucrose...Ch. 9.1 - Prob. 1PPACh. 9.1 - Prob. 1PPBCh. 9.1 - Prob. 1PPCCh. 9.1 - Prob. 9.1.1SRCh. 9.1 - Prob. 9.1.2SRCh. 9.1 - Prob. 9.1.3SRCh. 9.1 - Prob. 9.1.4SRCh. 9.1 - Prob. 9.1.5SRCh. 9.2 - Classify each of the following compounds as...
Ch. 9.2 - Prob. 2PPACh. 9.2 - Prob. 2PPBCh. 9.2 - Using Tables 9.2 and 9.3, identify a compound that...Ch. 9.2 - Prob. 3WECh. 9.2 - Prob. 3PPACh. 9.2 - Prob. 3PPBCh. 9.2 - Which diagram best represents the result when...Ch. 9.2 - Prob. 9.2.1SRCh. 9.2 - Prob. 9.2.2SRCh. 9.2 - Prob. 9.2.3SRCh. 9.2 - Prob. 9.2.4SRCh. 9.2 - Prob. 9.2.5SRCh. 9.3 - Prob. 9.4WECh. 9.3 - Prob. 4PPACh. 9.3 - Prob. 4PPBCh. 9.3 - Prob. 4PPCCh. 9.3 - Prob. 9.3.1SRCh. 9.3 - Prob. 9.3.2SRCh. 9.3 - Which of the following is the correct net ionic...Ch. 9.3 - Prob. 9.3.4SRCh. 9.4 - Prob. 9.5WECh. 9.4 - Prob. 5PPACh. 9.4 - Prob. 5PPBCh. 9.4 - Write the balanced equation for the reaction...Ch. 9.4 - Prob. 9.6WECh. 9.4 - Using the activity series, predict which of the...Ch. 9.4 - Prob. 6PPBCh. 9.4 - Prob. 6PPCCh. 9.4 - Prob. 9.7WECh. 9.4 - Predict which of the following reactions will...Ch. 9.4 - Prob. 7PPBCh. 9.4 - Prob. 7PPCCh. 9.4 - Determine the oxidation number of sulfur in each...Ch. 9.4 - Prob. 9.4.2SRCh. 9.4 - Prob. 9.4.3SRCh. 9.4 - Prob. 9.4.4SRCh. 9.5 - Prob. 9.8WECh. 9.5 - Prob. 8PPACh. 9.5 - Prob. 8PPBCh. 9.5 - Prob. 8PPCCh. 9.5 - Prob. 9.9WECh. 9.5 - Prob. 9PPACh. 9.5 - Prob. 9PPBCh. 9.5 - Prob. 9PPCCh. 9.5 - Starting with a 2.0-M stock solution of...Ch. 9.5 - Starting with a 6.552-M stock solution of HNO3,...Ch. 9.5 - Five standard solutions of HBr are prepared by...Ch. 9.5 - Prob. 10PPCCh. 9.5 - Prob. 9.11WECh. 9.5 - Prob. 11PPACh. 9.5 - Prob. 11PPBCh. 9.5 - Prob. 11PPCCh. 9.5 - Prob. 9.12WECh. 9.5 - Calculate the hydronium ion concentration in a...Ch. 9.5 - Prob. 12PPBCh. 9.5 - Prob. 12PPCCh. 9.5 - Prob. 9.13WECh. 9.5 - Prob. 13PPACh. 9.5 - Prob. 13PPBCh. 9.5 - Prob. 13PPCCh. 9.5 - Prob. 9.5.1SRCh. 9.5 - What mass of glucose (C6H12O6) in grams must be...Ch. 9.5 - Prob. 9.5.3SRCh. 9.5 - Prob. 9.5.4SRCh. 9.5 - Prob. 9.5.5SRCh. 9.5 - Prob. 9.5.6SRCh. 9.6 - Prob. 9.14WECh. 9.6 - Prob. 14PPACh. 9.6 - Prob. 14PPBCh. 9.6 - Which diagram best represents the solution...Ch. 9.6 - Prob. 9.15WECh. 9.6 - Prob. 15PPACh. 9.6 - What volume (in mL) of a 0.2550 M NaOH solution...Ch. 9.6 - Prob. 15PPCCh. 9.6 - Prob. 9.16WECh. 9.6 - Prob. 16PPACh. 9.6 - Prob. 16PPBCh. 9.6 - Prob. 9.17WECh. 9.6 - Prob. 17PPACh. 9.6 - What is the molar mass of a diprotic acid if 30.5...Ch. 9.6 - Prob. 17PPCCh. 9.6 - Prob. 9.6.1SRCh. 9.6 - Prob. 9.6.2SRCh. 9.6 - Prob. 9.6.3SRCh. 9.6 - Prob. 9.6.4SRCh. 9 - What is the balanced net ionic equation for the...Ch. 9 - Prob. 9.2KSPCh. 9 - Prob. 9.3KSPCh. 9 - Prob. 9.4KSPCh. 9 - Define solute, solvent, and solution by describing...Ch. 9 - What is the difference between a nonelectrolyte...Ch. 9 - Prob. 9.3QPCh. 9 - Prob. 9.4QPCh. 9 - Prob. 9.5QPCh. 9 - Prob. 9.6QPCh. 9 - You are given a water-soluble compound X. Describe...Ch. 9 - Prob. 9.8QPCh. 9 - Prob. 9.9QPCh. 9 - Prob. 9.10QPCh. 9 - Which of the following diagrams best represents...Ch. 9 - Prob. 9.12QPCh. 9 - Prob. 9.13QPCh. 9 - Describe hydration. What properties of water...Ch. 9 - What is the difference between a molecular...Ch. 9 - Prob. 9.16QPCh. 9 - Prob. 9.17QPCh. 9 - Prob. 9.18QPCh. 9 - Which reaction is represented by the net ionic...Ch. 9 - Prob. 9.20QPCh. 9 - Characterize the following compounds as soluble or...Ch. 9 - Write ionic and net ionic equations for the...Ch. 9 - Write ionic and net ionic equations for the...Ch. 9 - Prob. 9.24QPCh. 9 - Which of the following processes will likely...Ch. 9 - List the general properties of acids and bases.Ch. 9 - Prob. 9.27QPCh. 9 - Prob. 9.28QPCh. 9 - Prob. 9.29QPCh. 9 - What factors qualify a compound as a salt? Specify...Ch. 9 - Identify the following as a weak or strong acid or...Ch. 9 - Prob. 9.32QPCh. 9 - Prob. 9.33QPCh. 9 - Prob. 9.34QPCh. 9 - Prob. 9.35QPCh. 9 - Prob. 9.36QPCh. 9 - Prob. 9.37QPCh. 9 - Prob. 9.38QPCh. 9 - Describe how the activity series is organized, and...Ch. 9 - Prob. 9.40QPCh. 9 - Prob. 9.41QPCh. 9 - For the complete redox reactions represented here,...Ch. 9 - Prob. 9.43QPCh. 9 - Prob. 9.44QPCh. 9 - Prob. 9.45QPCh. 9 - Prob. 9.46QPCh. 9 - Give the oxidation numbers for the underlined...Ch. 9 - Give the oxidation numbers for the underlined...Ch. 9 - Prob. 9.49QPCh. 9 - Prob. 9.50QPCh. 9 - Prob. 9.51QPCh. 9 - Prob. 9.52QPCh. 9 - Prob. 9.53QPCh. 9 - Prob. 9.54QPCh. 9 - Prob. 9.55QPCh. 9 - Which of the following would result in the actual...Ch. 9 - Why cant we prepare the solution by first filling...Ch. 9 - Prob. 9.3VCCh. 9 - Prob. 9.4VCCh. 9 - Prob. 9.56QPCh. 9 - Prob. 9.57QPCh. 9 - Prob. 9.58QPCh. 9 - Prob. 9.59QPCh. 9 - Prob. 9.60QPCh. 9 - Prob. 9.61QPCh. 9 - Prob. 9.62QPCh. 9 - Prob. 9.63QPCh. 9 - Prob. 9.64QPCh. 9 - Prob. 9.65QPCh. 9 - Prob. 9.66QPCh. 9 - Prob. 9.67QPCh. 9 - Prob. 9.68QPCh. 9 - Prob. 9.69QPCh. 9 - Prob. 9.70QPCh. 9 - Prob. 9.71QPCh. 9 - Prob. 9.72QPCh. 9 - Prob. 9.73QPCh. 9 - Prob. 9.74QPCh. 9 - Prob. 9.75QPCh. 9 - Prob. 9.76QPCh. 9 - Prob. 9.77QPCh. 9 - Prob. 9.78QPCh. 9 - Prob. 9.79QPCh. 9 - Prob. 9.80QPCh. 9 - Prob. 9.81QPCh. 9 - Prob. 9.82QPCh. 9 - Complete the following table for a solution at...Ch. 9 - (a) What is the Na+ concentration in each of the...Ch. 9 - (a) Determine the chloride ion concentration in...Ch. 9 - Prob. 9.86QPCh. 9 - Determine the resulting nitrate ion concentration...Ch. 9 - Prob. 9.88QPCh. 9 - Absorbance values for five standard solutions of a...Ch. 9 - Which best represents the before-and-after...Ch. 9 - Prob. 9.91QPCh. 9 - Describe the basic steps involved in gravimetric...Ch. 9 - Explain why distilled water must be used in the...Ch. 9 - Describe the basic steps involved in an acid-base...Ch. 9 - Prob. 9.95QPCh. 9 - Prob. 9.96QPCh. 9 - Would the volume of a 0.10 M NaOH solution needed...Ch. 9 - Prob. 9.98QPCh. 9 - Prob. 9.99QPCh. 9 - The concentration of Cu2+ ions in the water (which...Ch. 9 - How many grams of NaCl are required to precipitate...Ch. 9 - Prob. 9.102QPCh. 9 - Prob. 9.103QPCh. 9 - Prob. 9.104QPCh. 9 - Prob. 9.105QPCh. 9 - Which of the following best represents the...Ch. 9 - Prob. 9.107QPCh. 9 - Prob. 9.108QPCh. 9 - Prob. 9.109QPCh. 9 - Prob. 9.110QPCh. 9 - Prob. 9.111QPCh. 9 - A 5.00 102 mL sample of 2.00 M HCl solution is...Ch. 9 - Calculate the volume of a 0.156 M CuSO4 solution...Ch. 9 - Prob. 9.114QPCh. 9 - Prob. 9.115QPCh. 9 - Prob. 9.116QPCh. 9 - Prob. 9.117QPCh. 9 - Prob. 9.118QPCh. 9 - Prob. 9.119QPCh. 9 - Prob. 9.120QPCh. 9 - Prob. 9.121QPCh. 9 - Prob. 9.122QPCh. 9 - Prob. 9.123QPCh. 9 - Prob. 9.124QPCh. 9 - Classify the following reactions according to the...Ch. 9 - Prob. 9.126QPCh. 9 - Prob. 9.127QPCh. 9 - Prob. 9.128QPCh. 9 - Prob. 9.129QPCh. 9 - Prob. 9.130QPCh. 9 - Prob. 9.131QPCh. 9 - Prob. 9.132QPCh. 9 - Prob. 9.133QPCh. 9 - Prob. 9.134QPCh. 9 - Prob. 9.135QPCh. 9 - Prob. 9.136QPCh. 9 - The concentration of lead ions (Pb2+) in a sample...Ch. 9 - Prob. 9.138QPCh. 9 - Prob. 9.139QPCh. 9 - Prob. 9.140QPCh. 9 - Prob. 9.141QPCh. 9 - Prob. 9.142QPCh. 9 - Prob. 9.143QPCh. 9 - The following are common household compounds: salt...Ch. 9 - Prob. 9.145QPCh. 9 - A 0.8870-g sample of a mixture of NaCl and KCl is...Ch. 9 - Prob. 9.147QPCh. 9 - Prob. 9.148QPCh. 9 - Acetylsalicylic acid (HC9H7O4) is a monoprotic...Ch. 9 - Prob. 9.150QPCh. 9 - Prob. 9.151QPCh. 9 - Prob. 9.152QPCh. 9 - Prob. 9.153QPCh. 9 - Prob. 9.154QPCh. 9 - Prob. 9.155QPCh. 9 - Prob. 9.156QPCh. 9 - Prob. 9.157QPCh. 9 - Prob. 9.158QPCh. 9 - Prob. 9.159QPCh. 9 - Prob. 9.160QPCh. 9 - Prob. 9.161QPCh. 9 - Prob. 9.162QPCh. 9 - Give a chemical explanation for each of the...Ch. 9 - Prob. 9.164QPCh. 9 - The following cycle of copper experiment is...Ch. 9 - Use the periodic table framework given here to...Ch. 9 - A 22.02-mL solution containing 1.615 g Mg(NO3)2 is...Ch. 9 - Because the acid-base and precipitation reactions...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 6-16 Answer true or false. (a) Solubility is a physical property like melting point and boiling point. (b) All solutions are transparent—that is, you can see through them. (c) Most solutions can be separated into their components by physical methods such as distillation and chromatography.arrow_forwardA solution is made by dissolving 34.0 g of NaCl in 100 g of H2O at 0C. Based on the data in Table 8-1, should this solution be characterized as a. saturated or unsaturated b. dilute or concentratedarrow_forwardDefine the terms in Raoults law. Figure 10-9 illustrates the net transfer of water molecules from pure water to an aqueous solution of a nonvolatile solute. Explain why eventually all of the water from the beaker of pure water will transfer to the aqueous solution. If the experiment illustrated in Fig. 10-9 was performed using a volatile solute, what would happen? How do you calculate the total vapor pressure when both the solute and solvent are volatile?arrow_forward
- 6-54 An industrial wastewater contains 3.60 ppb cadmium Cd2+. How many mg of Cd2+ could be recovered from a ton (1016 kg) of this wastewater?arrow_forward6-20 Give a familiar example of solutions of each of these types: (a) Liquid in liquid (b) Solid in liquid (c) Gas in liquid (d) Gas in gasarrow_forwardDistinguish between dispersion methods and condensation methods for preparing colloidal systems.arrow_forward
- 6-15 Answer true or false. (a) A solute is the substance dissolved in a solvent to form a solution. (b) A solvent is the medium in which a solute is dissolved to form a solution. (c) Some solutions can be separated into their components by filtration. (d) Acid rain is a solution.arrow_forwardThe dispersed phase of a certain colloidal dispersion consists of spheres of diameter 1.0 102 nm. (a) What are the volume (V=43r2) and surface area (A = r2) of each sphere? (b) How many spheres are required to give a total volume of 1.0 cm3? What is the total surface area of these spheres in square meters?arrow_forward6-99 A concentrated nitric acid solution contains 35% HNO3. How would we prepare 300. mL of 4.5% solution?arrow_forward
- 6-112 List the following aqueous solutions in order of increasing boiling point: 0.060 M glucose (C6H12O6), 0.025 M LiBr, and 0.025 M Zn(NO3)2.Assume complete dissociation of any salts.arrow_forward6-21 Are mixtures of gases true solutions or heterogeneous mixtures? Explain.arrow_forward6-111 As noted in Section 6-8C, the amount of external pressure that must be applied to a more concentrated solution to stop the passage of solvent molecules across a semipermeable membrane is known as the osmotic pressure The osmotic pressure obeys a law similar in form to the ideal gas law (discussed in Section 5-4), where Substituting for pressure and solving for osmotic pressures gives the following equation: RT MRT, where M is the concentration or molarity of the solution. (a) Determine the osmotic pressure at 25°C of a 0.0020 M sucrose (C12H22O11) solution. (b) Seawater contains 3.4 g of salts for every liter of solution. Assuming the solute consists entirely of NaCl (and complete dissociation of the NaCI salt), calculate the osmotic pressure of seawater at 25°C. (c) The average osmotic pressure of blood is 7.7 atm at 25°C. What concentration of glucose (C6H12O6) will be isotonic with blood? (d) Lysozyme is an enzyme that breaks bacterial cell walls. A solution containing 0.150 g of this enzyme in 210. mL of solution has an osmotic pressure of 0.953 torr at 25°C. What is the molar mass of lysozyme? (e) The osmotic pressure of an aqueous solution of a certain protein was measured in order to determine the protein's molar mass. The solution contained 3.50 mg of protein dissolved in sufficient water to form 5.00 mL of solution. The osmotic pressure of the solution at 25°C was found to be 1.54 torr. Calculate the molar mass of the protein.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
Thermogravimetric Analysis [ TGA ] # Thermal Analysis # Analytical Chemistry Part-11# CSIR NET/GATE; Author: Priyanka Jain;https://www.youtube.com/watch?v=p1K-Jpzylso;License: Standard YouTube License, CC-BY