Organic Chemistry
6th Edition
ISBN: 9781936221349
Author: Marc Loudon, Jim Parise
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 9.84AP
Interpretation Introduction
Interpretation:
The mechanism for reaction of butylamine,
Concept introduction:
The replacement or substitution of one
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
7. Tert-butyl alcohol reacts with aqueous hydrochloric acid to give tert-butyl chloride as
shown below:
(CH3)3COH(aq) + H¯(aq) + Cl(aq) → (CH3)3CCl(aq) + H₂O(1)
For this reaction, rate = k[(CH3)3COH][H*]. With which mechanism is this rate law
consistent?
A) (CH3)3COH(aq) + H*(aq)
(CH3)3C(OH₂)*(aq)
B)
(CH3)3C(OH₂)*(aq) + Cl(aq) → (CH3)3CCl(aq) + H₂O(1)
(CH3)3COH(aq) → (CH3)3C+(aq) + OH-(aq)
(CH3)3C+ (aq) + Cl(aq) → (CH3)3CCl(aq)
H*(aq) + OH-(aq) → H₂O(1)
(CH3)3COH(aq) + Cl·(aq) → (CH3)3CCl*(aq) + OH¯(aq)
H*(aq) + OH-(aq) → H₂O(1)
(CH3)3COH(aq) + H*(aq) → (CH3)3C(OH₂)*(aq)
(CH3)3C(OH₂)*(aq) → (CH3)3C¯(aq) + H₂O(1)
(CH3)3C+(aq) + Cl(aq) → (CH3)3CCl(aq)
E) None of these mechanisms are consistent with the rate law provided.
C)
D)
(fast)
(slow)
(slow)
(fast)
(slow)
(fast)
(fast)
(fast)
(slow)
(fast)
What is the mechanism here?
Alkoxides R-O can be used to synthesize alkenes as exemplified by the reaction shov
below, where the symbol (et) indicates that the substance is dissolved in ethanol
(CH,CH,OH) used as solvent:
Br
+
(1)
Br(et)
(et)
+
(et)
CH,CH,OH
+
t-but-Br
Ethoxide
Isobutylene
10. What is the value of the rate constant for the synthesis of isobutylene at 25 °C?
а) 6.8 х10-8
Trial
Initial
Initial
Initial Rate (M/s)
[t-but-Br]
[Ethoxide]
[isobutylene]
b) 8.5 x10-7
6.8 x 10-8
13.6 х 10-8
1
0.08 M
0.04 M
c) 2.1 x 10-5
0.16 M
0.04 M
0.08 M
0.08 M
6.8 x 10-8
13.6 x 10-8
d) 1.1 x10-5
3
0.08 M
4
0.16 M
Chapter 9 Solutions
Organic Chemistry
Ch. 9 - Prob. 9.1PCh. 9 - Prob. 9.2PCh. 9 - Prob. 9.3PCh. 9 - Prob. 9.4PCh. 9 - Prob. 9.5PCh. 9 - Prob. 9.6PCh. 9 - Prob. 9.7PCh. 9 - Prob. 9.8PCh. 9 - Prob. 9.9PCh. 9 - Prob. 9.10P
Ch. 9 - Prob. 9.11PCh. 9 - Prob. 9.12PCh. 9 - Prob. 9.13PCh. 9 - Prob. 9.14PCh. 9 - Prob. 9.15PCh. 9 - Prob. 9.16PCh. 9 - Prob. 9.17PCh. 9 - Prob. 9.18PCh. 9 - Prob. 9.19PCh. 9 - Prob. 9.20PCh. 9 - Prob. 9.21PCh. 9 - Prob. 9.22PCh. 9 - Prob. 9.23PCh. 9 - Prob. 9.24PCh. 9 - Prob. 9.25PCh. 9 - Prob. 9.26PCh. 9 - Prob. 9.27PCh. 9 - Prob. 9.28PCh. 9 - Prob. 9.29PCh. 9 - Prob. 9.30PCh. 9 - Prob. 9.31PCh. 9 - Prob. 9.32PCh. 9 - Prob. 9.33PCh. 9 - Prob. 9.34PCh. 9 - Prob. 9.35PCh. 9 - Prob. 9.36PCh. 9 - Prob. 9.37PCh. 9 - Prob. 9.38PCh. 9 - Prob. 9.39PCh. 9 - Prob. 9.40PCh. 9 - Prob. 9.41PCh. 9 - Prob. 9.42PCh. 9 - Prob. 9.43PCh. 9 - Prob. 9.44APCh. 9 - Prob. 9.45APCh. 9 - Prob. 9.46APCh. 9 - Prob. 9.47APCh. 9 - Prob. 9.48APCh. 9 - Prob. 9.49APCh. 9 - Prob. 9.50APCh. 9 - Prob. 9.51APCh. 9 - Prob. 9.52APCh. 9 - Prob. 9.53APCh. 9 - Prob. 9.54APCh. 9 - Prob. 9.55APCh. 9 - Prob. 9.56APCh. 9 - Prob. 9.57APCh. 9 - Prob. 9.58APCh. 9 - Prob. 9.59APCh. 9 - Prob. 9.60APCh. 9 - Prob. 9.61APCh. 9 - Prob. 9.62APCh. 9 - Prob. 9.63APCh. 9 - Prob. 9.64APCh. 9 - Prob. 9.65APCh. 9 - Prob. 9.66APCh. 9 - Prob. 9.67APCh. 9 - Prob. 9.68APCh. 9 - Prob. 9.69APCh. 9 - Prob. 9.70APCh. 9 - Prob. 9.71APCh. 9 - Prob. 9.72APCh. 9 - Prob. 9.73APCh. 9 - Prob. 9.74APCh. 9 - Prob. 9.75APCh. 9 - Prob. 9.76APCh. 9 - Prob. 9.77APCh. 9 - Prob. 9.78APCh. 9 - Prob. 9.79APCh. 9 - Prob. 9.80APCh. 9 - Prob. 9.81APCh. 9 - Prob. 9.82APCh. 9 - Prob. 9.83APCh. 9 - Prob. 9.84APCh. 9 - Prob. 9.85APCh. 9 - Prob. 9.86APCh. 9 - Prob. 9.87AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The rate constant for the ?rst-order decomposition at 45 C of dinitrogen pentoxide, N2O5, dissolved in chloroform, CHCI3, is 6.2104 min-1. 2N2O54NO2+O2 What is the rate of the reaction when [N2O5] = 0.40 M?arrow_forwardFor the past 10 years, the unsaturated hydrocarbon 1, 3-butadiene (CH2 = CH - CH = CH2) has ranked 38th among the top 50 industrial Chemicals. It is used primarily for the manufacture of synthetic rubber. An isomer exists also as cyclobutene: The isomerization of cyclobutene to butadiene is first-order and the rate constant has been measured as 2.0104s1 at 150 C in a 0.53-L ?ask. Determine the partial pressure of cyclobutene and its concentration after 30.0 minutes if an isomerization reaction is carried out at 150 C with an initial pressure of 55 torr.arrow_forwardThe reaction of compound A to give compounds C and D was found to be second-order in A . The rate constant for the reaction was determined to be 2.42 L/mol/s. If the initial concentration is 0.500 mol/L, what is the value of t1/2?arrow_forward
- The decomposition of azomethane, (CH3)2N2, to nitrogen and ethane gases is a first-order reaction, (CH3)2N2(g)N2(g)+C2H6(g). At a certain temperature, a 29-mg sample of azomethane is reduced to 12 mg in 1.4 s. (a) What is the rate constant k for the decomposition at that temperature? (b) What is the half-life of the decomposition? (c) How long will it take to decompose 78% of the azomethane?arrow_forwardThe acid-catalyzed iodination of acetone CH3COCH3(aq) + I2(aq) CH3COCH2I(aq) + HI(aq) is a common laboratory experiment used in general chemistry courses to teach the method of initial rates. The reaction is followed spectrophotometrically by the disappearance of the color of iodine in the solution. The following data (J. P. Birk and D. L Walters, Journal of Chemical Education, Vol. 69, p. 585, 1992) were collected at 23 C for this reaction. Determine the rate law for this reaction.arrow_forwardThe plot below shows the number of collisions with a particular energy for two different temperatures. a. Which is greater, T2 or T1? How can you tell? b. What does this plot tell us about the temperature of the rate of a chemical reaction? Explain your answer.arrow_forward
- In the nuclear industry, chlorine trifluoride is used to prepare uranium hexafluoride, a volatile compound of uranium used in the separation of uranium isotopes. Chlorine trifluoride is prepared by the reaction CI2(g)+3F2(g)2CIF3(g). Write the equation that relates the rate expressions for this reaction in terms of the disappearance of Cl2 and F2 and the formation of CIF3.arrow_forwardAlcohol is removed from the bloodstream by a series of metabolic reactions. The first reaction produces acetaldehyde; then other products are formed. The following data have been determined for the rate at which alcohol is removed from the blood of an average male, although individual rates can vary by 2530%. Women metabolize alcohol a little more slowly than men: [C2H5OH](M) 4.4102 3.3102 2.2102 Rate(moI/L/h) 2.0102 2.0102 2.0102 Determine the rate equation, the rate constant, and the overall order for this reaction.arrow_forwardConsider a reaction of the type aA products, in which the rate law is found to he rate = k[A]3 (termolecular reactions are improbable but possible). If the first half-tife of the reaction is found to he 40. s, what is the time for the second half-life? Hint: Using your calculus knowledge, derive the integrated rate law from the differential rate law for a tennolecular reaction: Rate=d[A]dt=k[A]3arrow_forward
- Distinguish between the differential rate law and the integrated rate law. Which of these is often called just the rate law? What is k in a rate law, and what are orders in a rate law? Explain.arrow_forwardOne mechanism for the destruction of ozone in the upper atmosphere is a. Which species is a catalyst? b. Which species is an intermediate? c. Ea for the uncatalyzed reaction O3(g)+O(g)2O2(g) is 14.0 kJ. Ea. for the same reaction when catalyzed is 11.9 kJ. What is the ratio of the rate constant for the catalyzed reaction to that for the uncatalyzed reaction at 25C? Assume that the frequency factor A is the same for each reaction.arrow_forwardThe rate equation for a reaction A + B C was determined by experiment to be Rate = k[A][B]. From this we can conclude (a) the reaction occurs in a single elementary step (b) this reaction might occur in a single elementary step (c) this reaction must involve several elementary stepsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY