Fluid Mechanics
Fluid Mechanics
8th Edition
ISBN: 9780073398273
Author: Frank M. White
Publisher: McGraw-Hill Education
bartleby

Videos

Question
Book Icon
Chapter 9, Problem 9.42P
To determine

(a)

To calculate:

The Mach number, velocity and temperature at exit plane.

Expert Solution
Check Mark

Answer to Problem 9.42P

Mae=0.9

Te=260.75K

Ve=291.31m/s

Explanation of Solution

Given information:

At stagnation point,

p0=169.12kPaT0=30°C

The absolute pressure is equal to pa=100kPa and Ta=20°C

The valve exit diameter is equal to 2mm

The pressure ratio is defined as,

p0p=[1+12(k1)Ma2]k/k1

Assume, for air,

k=1.4R=287m2/s2.K

The temperature ratio is defined as,

T0T=[1+12(k1)Ma2]

Speed of sound is defined as,

a=kRT

Where,

R - Gas constant

k - Specific heat capacity

The Mach number is defined as,

Ma=Va

Where,

V - Air velocity

Calculation:

Calculate the Mach number,

p0pa=[1+12(k1)Mae2]k/k1

Substitute for known values,

169.12kPa100kPa=[1+12(1.41)Mae2]1.4/1.41

Solve to find Mach number,

Mae=0.9

Calculate the exit temperature,

T0Te=[1+12(k1)Mae2]

Convert,

T0=30°C=303K

Substitute for known values,

303KTe=[1+12(1.41)(0.9)2]

Therefore,

Te=260.75K

Calculate the exit velocity,

Ve=Mae(a)=MaekRTe

Substitute for known values,

Ve=(0.9)1.4(287m2/s2.K)(260.75K)

Therefore,

Ve=291.31m/s

Conclusion:

The exit Mach number is equal to Mae=0.9

Exit temperature is equal to Te=260.75K

Exit velocity is equal to Ve=291.31m/s.

To determine

(b)

To calculate:

Initial mass flow rate.

Expert Solution
Check Mark

Answer to Problem 9.42P

m=1.223×103kg/s

Explanation of Solution

Given information:

At stagnation point,

p0=169.12kPaT0=30°C

The absolute pressure is equal to pa=100kPa and Ta=20°C

The valve exit diameter is equal to 2mm

The density at section 1 is defined as,

ρ1=p1RT1

The mass flow is defined as,

m=ρ1A1V1

Where,

A1 - Area at section 1,

For ideal gas,

R=287m2/s2.Kk=1.4

Calculation:

Calculate the exit density,

ρe=peRTe=100000kPa(287m2/s2.K)(260.75K)=1.336kg/m3

Calculate the mass flow rate,

m=ρeAeVe=(1.336kg/m3)(π4 ( 0.002m )2)(291.31m/s)=1.223×103kg/s

Conclusion:

The mass flow is equal to m=1.223×103kg/s.

To determine

(c)

To calculate:

The exit velocity using incompressible Bernoulli’s equation.

Expert Solution
Check Mark

Answer to Problem 9.42P

Ve=266.59m/s

The above obtained value of 266.59m/s is almost 8% lower than the velocity found in sup-part a Ve=291.31m/s

Explanation of Solution

Given information:

At stagnation point,

p0=169.12kPaT0=30°C

The absolute pressure is equal to pa=100kPa and Ta=20°C

The valve exit diameter is equal to 2mm

The density at section 1 is defined as,

ρ1=p1RT1

According to incompressible Bernoulli’s equation,

The exit velocity is defined as,

Ve=2Δpρ0

Calculation:

Calculate the density,

ρ0=p0RT0

Assume,

p0=ptire=169.12kPa

Therefore,

ρ0=p0RT0=169120Pa(287m2/s2.K)(303K)=1.945kg/m3

Calculate the exit velocity

According to incompressible Bernoulli’s equation,

Ve=2Δpρ0

Substitute for known values,

Ve=2Δpρ0=2( 169120Pa100000Pa)1.945kg/m3=266.59m/s

The above obtained value of 266.59m/s is almost 8% lower than the velocity found in sup-part a Ve=291.31m/s

Conclusion:

The exit velocity is equal to 266.59m/s.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1- Determine the following: 1- RSHF? 2- C.C.C in tons-ref. 3- Mass of supply air? Fresh Spray chilled water S air 100% RH To 34 C db & 26 wbt S Operation fan room I Exhaust air Ti 22 C db & 50% RH
How do I solve this task A weight for a lift is suspended using an adapter. The counterweight is held up with 4 screws. The weight F is 3200kg. The screws have a strength class of 8.8. Safety factor 3 Which is the smallest bunch size that can be used?+_Sr/Fm =0,16Gr=0,71ơ=800·0.8=640 MPaAs=?Fmax= As·ơ·GrFs=ơs·AsFFm= Fs· GFSF =SF / FFm · FFm Fpreload =Fload / SF → Fload /3Fpreload per screw =Fload / SF → Fload /4As=Fpreload per screw /ơ·Gr → As= Fpreload per screw / 640· 0.71 The correct answer should be M12 with As=84.3mm²
... TELEGRAM ديسمبر ۲۰۲ عند الساعة سوأل الوجه البينة ۲۷ - Find the equivalent resistance between A and B bellows For the circuit shown. • All resistances in Ohms. 2 C 2 A 4 B www 4 E 5 www ww 8 bar K. Dr. Abduljabbo Hammade 27/12/2024

Chapter 9 Solutions

Fluid Mechanics

Ch. 9 - Prob. 9.11PCh. 9 - Prob. 9.12PCh. 9 - Consider steam at 500 K and 200 kPa. Estimate its...Ch. 9 - Prob. 9.14PCh. 9 - Prob. 9.15PCh. 9 - Prob. 9.16PCh. 9 - Prob. 9.17PCh. 9 - Prob. 9.18PCh. 9 - Prob. 9.19PCh. 9 - Prob. 9.20PCh. 9 - P9.21 N?O expands isentropically through a duct...Ch. 9 - Given the pitot stagnation temperature and...Ch. 9 - Prob. 9.23PCh. 9 - Prob. 9.24PCh. 9 - Prob. 9.25PCh. 9 - Prob. 9.26PCh. 9 - P9.27 A pitot tube, mounted on an airplane flying...Ch. 9 - Prob. 9.28PCh. 9 - Prob. 9.29PCh. 9 - Prob. 9.30PCh. 9 - Prob. 9.31PCh. 9 - Prob. 9.32PCh. 9 - Prob. 9.33PCh. 9 - Prob. 9.34PCh. 9 - Prob. 9.35PCh. 9 - P9.36 An air tank of volume 1.5 m3 is initially at...Ch. 9 - Make an exact control volume analysis of the...Ch. 9 - Prob. 9.38PCh. 9 - Prob. 9.39PCh. 9 - Prob. 9.40PCh. 9 - Prob. 9.41PCh. 9 - Prob. 9.42PCh. 9 - Prob. 9.43PCh. 9 - Prob. 9.44PCh. 9 - It is desired to have an isentropic airflow...Ch. 9 - Prob. 9.46PCh. 9 - Prob. 9.47PCh. 9 - Prob. 9.48PCh. 9 - Prob. 9.49PCh. 9 - Prob. 9.50PCh. 9 - Prob. 9.51PCh. 9 - Prob. 9.52PCh. 9 - Prob. 9.53PCh. 9 - Prob. 9.54PCh. 9 - Prob. 9.55PCh. 9 - Prob. 9.56PCh. 9 - Prob. 9.57PCh. 9 - Prob. 9.58PCh. 9 - Prob. 9.59PCh. 9 - Prob. 9.60PCh. 9 - Prob. 9.61PCh. 9 - Prob. 9.62PCh. 9 - Prob. 9.63PCh. 9 - Prob. 9.64PCh. 9 - Prob. 9.65PCh. 9 - Prob. 9.66PCh. 9 - Prob. 9.67PCh. 9 - Prob. 9.68PCh. 9 - Prob. 9.69PCh. 9 - Prob. 9.70PCh. 9 - A converging-diverging nozzle has a throat area of...Ch. 9 - Prob. 9.72PCh. 9 - Prob. 9.73PCh. 9 - Prob. 9.74PCh. 9 - Prob. 9.75PCh. 9 - Prob. 9.76PCh. 9 - P9.77 A perfect gas (not air) expands...Ch. 9 - Prob. 9.78PCh. 9 - P9.79 A large tank, at 400 kPa and 450 K, supplies...Ch. 9 - Prob. 9.80PCh. 9 - Prob. 9.81PCh. 9 - Prob. 9.82PCh. 9 - 1*9.83 When operating at design conditions (smooth...Ch. 9 - Prob. 9.84PCh. 9 - A typical carbon dioxide tank for a paintball gun...Ch. 9 - Prob. 9.86PCh. 9 - Prob. 9.87PCh. 9 - Prob. 9.88PCh. 9 - Prob. 9.89PCh. 9 - Prob. 9.90PCh. 9 - Prob. 9.91PCh. 9 - Prob. 9.92PCh. 9 - Prob. 9.93PCh. 9 - Prob. 9.94PCh. 9 - Prob. 9.95PCh. 9 - Prob. 9.96PCh. 9 - Prob. 9.97PCh. 9 - Prob. 9.98PCh. 9 - Prob. 9.99PCh. 9 - Prob. 9.100PCh. 9 - Prob. 9.101PCh. 9 - Prob. 9.102PCh. 9 - Prob. 9.103PCh. 9 - Prob. 9.104PCh. 9 - Prob. 9.105PCh. 9 - Prob. 9.106PCh. 9 - Prob. 9.107PCh. 9 - Prob. 9.108PCh. 9 - P9.109 A jet engine at 7000-m altitude takes in 45...Ch. 9 - Prob. 9.110PCh. 9 - Prob. 9.111PCh. 9 - Prob. 9.112PCh. 9 - Prob. 9.113PCh. 9 - Prob. 9.114PCh. 9 - Prob. 9.115PCh. 9 - Prob. 9.116PCh. 9 - P9.117 A tiny scratch in the side of a supersonic...Ch. 9 - Prob. 9.118PCh. 9 - Prob. 9.119PCh. 9 - Prob. 9.120PCh. 9 - Prob. 9.121PCh. 9 - Prob. 9.122PCh. 9 - Prob. 9.123PCh. 9 - Prob. 9.124PCh. 9 - Prob. 9.125PCh. 9 - Prob. 9.126PCh. 9 - Prob. 9.127PCh. 9 - Prob. 9.128PCh. 9 - Prob. 9.129PCh. 9 - Prob. 9.130PCh. 9 - Prob. 9.131PCh. 9 - Prob. 9.132PCh. 9 - Prob. 9.133PCh. 9 - P9.134 When an oblique shock strikes a solid wall,...Ch. 9 - Prob. 9.135PCh. 9 - Prob. 9.136PCh. 9 - Prob. 9.137PCh. 9 - Prob. 9.138PCh. 9 - Prob. 9.139PCh. 9 - Prob. 9.140PCh. 9 - Prob. 9.141PCh. 9 - Prob. 9.142PCh. 9 - Prob. 9.143PCh. 9 - Prob. 9.144PCh. 9 - Prob. 9.145PCh. 9 - Prob. 9.146PCh. 9 - Prob. 9.147PCh. 9 - Prob. 9.148PCh. 9 - Prob. 9.149PCh. 9 - Prob. 9.150PCh. 9 - Prob. 9.151PCh. 9 - Prob. 9.152PCh. 9 - Prob. 9.153PCh. 9 - Prob. 9.154PCh. 9 - Prob. 9.155PCh. 9 - Prob. 9.156PCh. 9 - The Ackeret airfoil theory of Eq. (9.104) is meant...Ch. 9 - Prob. 9.1WPCh. 9 - Prob. 9.2WPCh. 9 - Prob. 9.3WPCh. 9 - Prob. 9.4WPCh. 9 - Prob. 9.5WPCh. 9 - Prob. 9.6WPCh. 9 - Prob. 9.7WPCh. 9 - Prob. 9.8WPCh. 9 - FE9.1 For steady isentropic flow, if the absolute...Ch. 9 - FE9.2 For steady isentropic flow, if the density...Ch. 9 - Prob. 9.3FEEPCh. 9 - Prob. 9.4FEEPCh. 9 - Prob. 9.5FEEPCh. 9 - Prob. 9.6FEEPCh. 9 - Prob. 9.7FEEPCh. 9 - Prob. 9.8FEEPCh. 9 - Prob. 9.9FEEPCh. 9 - Prob. 9.10FEEPCh. 9 - Prob. 9.1CPCh. 9 - Prob. 9.2CPCh. 9 - Prob. 9.3CPCh. 9 - Prob. 9.4CPCh. 9 - Prob. 9.5CPCh. 9 - Prob. 9.6CPCh. 9 - Professor Gordon Holloway and his student, Jason...Ch. 9 - Prob. 9.8CPCh. 9 - Prob. 9.1DPCh. 9 - Prob. 9.2DP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License