Fundamentals of Electromagnetics with Engineering Applications
1st Edition
ISBN: 9780470105757
Author: Stuart M. Wentworth
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 9.10P
What is the spectral bandwidth for a 4.0-ns rise time signal, using (9.13)? What rise time is required to achieve a 1-GHz bandwidth?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is Maximum Usable Frequency (MUF)? Derive the expression of MUF critical frequency (fcr) and skip distance assuming curve earth.
Discuss in detail about the narrowband noise and analyze the properties of in- phase and quadrature components of narrow band noise.
A spectrum analyzer with an input impedance of 200 is used to
measure the power spectrum of an AM signal at the output of a
preamplifier circuit. The AM signal has been modulated with a
sine wave. The effective carrier power, Pc, is 750mw, and each
sideband, PusB and PLSB, is 120mW. Compute the following:
1- The total effective power Pr.
2- The peak carrier voltage, Vc-
3- The modulation index, m, and the percent modulation index.
4- The modulation voltage,Vm.
5- The lower -and upper - sideband voltages, VLSB and VUB.
6- Sketch the waveform that you would you see with an oscilloscope
if it were placed in parallel with the spectrum analyzer.
Chapter 9 Solutions
Fundamentals of Electromagnetics with Engineering Applications
Ch. 9 - Given a 2.0-cm length of AWG20 copper wire, (a)...Ch. 9 - Recalculate L, Cx, and fSRF if the AWG3O wire for...Ch. 9 - Estimate L and the SRF if a 99.8% iron core is...Ch. 9 - Prob. 9.5PCh. 9 - Prob. 9.6PCh. 9 - Prob. 9.7PCh. 9 - If the 2.2-nF capacitor of Example 9.3 has an area...Ch. 9 - Prob. 9.9PCh. 9 - What is the spectral bandwidth for a 4.0-ns rise...Ch. 9 - Prob. 9.11P
Ch. 9 - Prob. 9.13PCh. 9 - Repeat Example 9.5 using AWG22 wire and 200-MHz...Ch. 9 - Prob. 9.15PCh. 9 - Prob. 9.16PCh. 9 - Prob. 9.17PCh. 9 - Shielding low-frequency magnetic fields often...Ch. 9 - Prob. 9.21PCh. 9 - Prob. 9.22PCh. 9 - Prob. 9.23PCh. 9 - Prob. 9.24PCh. 9 - Determine the insertion loss at 40 MHz for a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q2. For the scheme shown in Figure Q2, i. Draw the spectrum of the baseband signal (multiplexer output) for the multiplexer. ii. Determine the bandwidth of the baseband signal (multiplexer output) for the multiplexer. iii. Determine the minimum transmission bandwidth of the multiplexer. Explain, briefly, the modification needed for the multiplexer in the figure to achieve this bandwidth. 3 kHz cos 10,000nt Bascband signal cos? 1000nt Σ cos 22,000rt 4 kHz cos 36,000nt Figure Q2arrow_forwardModify this circuit to extend the upper frequency limit to greater than 15 MHz. You may change the topology (i.e. configuration), but not the power supply voltage or collector bias current. The circuit voltage gain must be 46dB +/- 1 dB. Provide simulation results to show AC frequency responses of both circuits on the same plot, and annotate the 3dB upper frequency limit on both traces. Use typical ẞ values from the data sheet for the simulation. You may assume that 1% resistors are available in values below 100. The circuit must adhere to Standard Bias techniques. V4 Rser=0 SINE(0 0.02 10k) AC 1 VCC ୯ V2 +15V Cin1 1μ -VCC VCC R4 Rc1 147k 7k Q3 2N3904 R7 R6 9.09 20.5k Ce1 Re1 1.00k 10p Outarrow_forwardThe equation of an angle-modulated voltage is v = 10 sin (l08t + 3 sin 104,). What form of angle modulation is this? Calculate the carrier and modulating frequencies, the modulation index and deviation, and the power dissipated in a 100-ohm resistor.arrow_forward
- Please show all workarrow_forwardWhy does the equivalent impedance (value get: 558.581) and the equivalent resistance (value get: 500.125) from the not the same in Resonance Experiment? Explain why...arrow_forwardDerive an expression for an norrow band pm. For a sinusoidal information signalarrow_forward
- Q2. For the scheme shown in Figure Q2, i. Draw the spectrum of the baseband signal (multiplexer output) for the multiplexer. ii. Determine the bandwidth of the baseband signal (multiplexer output) for the multiplexer. i. Determine the minimum transmission bandwidth of the multiplexer. Explain, briefly, the modification needed for the multiplexer in the figure to achieve this bandwidth. 4 kHz cos 10,000xt Basebund signal cos 24,000mt cos 2000mt cos 32,000nt Figure Q2arrow_forwardQ2. For the scheme shown in Figure Q2, L Draw the spectrum of the baseband signal (multiplexer output) for the multiplexer. il. Determine the bandwidth of the baseband signal (multiplexer output) for the multiplexer. Determine the minimum transmission bandwidth of the multiplexer. Explain, briefly, the modification needed for the multiplexer in the figure to achieve this bandwidth. il. cos 10,000xt Hascband signal cos 24,000t cos 2000mt con 32,000et Figure Q2arrow_forward2 (AM) A 10 V amplitude sinusoidal signal is used as a modulating signal to generate an AM signal with modulation index 0.8. What is the amplitude of the carrier? What is the power of the side bands? What is the efficiency of the modulated signal?arrow_forward
- 78. To assure the same accuracy at both 100 Hz and 100 MHz, the signal level into a frequency counter must be A higher at 100 MHz B. higher at 100 Hz C. inductively coupled at 100 MHz and capacitively coupled at 100 Hz D. resistively coupled at 100 MHz and direct coupled at 100 Hzarrow_forwardWhat do you infer from the frequency spectrum of a PWM signal?arrow_forwardQL. An indirect Armstrong method is used to produce a wideband frequency modulated signal with carrier frequency of 100 MHz and maximum frequency deviation of 75 kHz. In this Armstrong modulator circuit, a narrowband Frequency Modulation modulator is used to produce an initial carrier frequency of 10 kHz and frequency deviation of 36.62 Hz. (1) With the aid of block diagram, determine the value of the required frequency multiplier (using only a single multiplier) and possible local oscillator frequencies.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
FM and Phase Modulation Explained in Xfer's SERUM; Author: Ghosthack;https://www.youtube.com/watch?v=A2q2MpeVtXU;License: Standard Youtube License