Single Variable Calculus: Early Transcendentals
8th Edition
ISBN: 9781305270336
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 8RCC
(a)
To determine
To write: The logistic differential equation.
(b)
To determine
The circumstance under which the model is appropriate.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Single Variable Calculus: Early Transcendentals
Ch. 9.1 - Show that y=23ex+e2x is a solution of the...Ch. 9.1 - Prob. 2ECh. 9.1 - (a) For what values of r does the function y = erx...Ch. 9.1 - (a) For what values of k does the function y = cos...Ch. 9.1 - Which of the following functions are solutions of...Ch. 9.1 - (a) Show that every member of the family of...Ch. 9.1 - Prob. 7ECh. 9.1 - Prob. 8ECh. 9.1 - Prob. 9ECh. 9.1 - Prob. 10E
Ch. 9.1 - Explain why the functions with the given graphs...Ch. 9.1 - Prob. 12ECh. 9.1 - Prob. 13ECh. 9.1 - Prob. 14ECh. 9.1 - Psychologists interested in learning theory study...Ch. 9.1 - Von Bertalanffys equation states that the rate of...Ch. 9.1 - Prob. 17ECh. 9.2 - A direction field for the differential equation y...Ch. 9.2 - Prob. 2ECh. 9.2 - Prob. 3ECh. 9.2 - Prob. 4ECh. 9.2 - Prob. 5ECh. 9.2 - Prob. 6ECh. 9.2 - Prob. 7ECh. 9.2 - Prob. 8ECh. 9.2 - Prob. 9ECh. 9.2 - Prob. 10ECh. 9.2 - Prob. 11ECh. 9.2 - Prob. 12ECh. 9.2 - Prob. 13ECh. 9.2 - Prob. 14ECh. 9.2 - Prob. 19ECh. 9.2 - A direction field for a differential equation is...Ch. 9.2 - Prob. 21ECh. 9.2 - Prob. 22ECh. 9.2 - Use Eulers method with step size 0.1 to estimate...Ch. 9.2 - Prob. 24ECh. 9.2 - Prob. 27ECh. 9.3 - Solve the differential equation. 1. dydx=3x2y2Ch. 9.3 - Prob. 2ECh. 9.3 - Prob. 3ECh. 9.3 - Prob. 4ECh. 9.3 - Solve the differential equation. 5. (ey 1)y = 2 +...Ch. 9.3 - Prob. 6ECh. 9.3 - Prob. 7ECh. 9.3 - Prob. 8ECh. 9.3 - Prob. 9ECh. 9.3 - Prob. 10ECh. 9.3 - Prob. 11ECh. 9.3 - Prob. 12ECh. 9.3 - Prob. 13ECh. 9.3 - Prob. 14ECh. 9.3 - Prob. 15ECh. 9.3 - Prob. 16ECh. 9.3 - Prob. 17ECh. 9.3 - Prob. 18ECh. 9.3 - Find an equation of the curve that passes through...Ch. 9.3 - Prob. 20ECh. 9.3 - Solve the differential equation y = x + y by...Ch. 9.3 - Solve the differential equation xy = y + xey/x by...Ch. 9.3 - Prob. 23ECh. 9.3 - Prob. 24ECh. 9.3 - Prob. 29ECh. 9.3 - Prob. 30ECh. 9.3 - Prob. 31ECh. 9.3 - Prob. 32ECh. 9.3 - Prob. 33ECh. 9.3 - An integral equation is an equation that contains...Ch. 9.3 - Prob. 35ECh. 9.3 - Find a function f such that f(3) = 2 and...Ch. 9.3 - Solve the initial-value problem in Exercise 9.2.27...Ch. 9.3 - Prob. 38ECh. 9.3 - In Exercise 9.1.15 we formulated a model for...Ch. 9.3 - Prob. 40ECh. 9.3 - Prob. 41ECh. 9.3 - A sphere with radius 1 m has temperature 15C. It...Ch. 9.3 - A glucose solution is administered intravenously...Ch. 9.3 - A certain small country has 10 billion in paper...Ch. 9.3 - Prob. 45ECh. 9.3 - Prob. 46ECh. 9.3 - Prob. 47ECh. 9.3 - Prob. 48ECh. 9.3 - Prob. 49ECh. 9.3 - Prob. 50ECh. 9.3 - Prob. 51ECh. 9.3 - Prob. 52ECh. 9.3 - Prob. 54ECh. 9.4 - Prob. 1ECh. 9.4 - A population grows according to the given logistic...Ch. 9.4 - Prob. 3ECh. 9.4 - The Pacific halibut fishery has been modeled by...Ch. 9.4 - Suppose a population P(t) satisfies...Ch. 9.4 - Prob. 7ECh. 9.4 - Prob. 8ECh. 9.4 - Prob. 9ECh. 9.4 - Prob. 10ECh. 9.4 - Prob. 11ECh. 9.4 - Biologists stocked a lake with 400 fish and...Ch. 9.4 - Prob. 13ECh. 9.4 - Prob. 14ECh. 9.4 - Prob. 16ECh. 9.4 - Prob. 17ECh. 9.4 - Let c be a positive number. A differential...Ch. 9.4 - There is considerable evidence to support the...Ch. 9.4 - Another model for a growth function for a limited...Ch. 9.4 - Prob. 23ECh. 9.4 - Prob. 24ECh. 9.4 - Prob. 25ECh. 9.5 - Prob. 1ECh. 9.5 - Prob. 2ECh. 9.5 - Prob. 3ECh. 9.5 - Prob. 4ECh. 9.5 - Prob. 5ECh. 9.5 - Prob. 6ECh. 9.5 - Prob. 7ECh. 9.5 - Prob. 8ECh. 9.5 - Prob. 9ECh. 9.5 - Prob. 10ECh. 9.5 - Prob. 11ECh. 9.5 - Prob. 12ECh. 9.5 - Solve the differential equation. 13....Ch. 9.5 - Solve the differential equation. 14....Ch. 9.5 - Prob. 15ECh. 9.5 - Prob. 16ECh. 9.5 - Prob. 17ECh. 9.5 - Prob. 18ECh. 9.5 - Prob. 19ECh. 9.5 - Prob. 20ECh. 9.5 - Prob. 21ECh. 9.5 - Prob. 22ECh. 9.5 - Prob. 23ECh. 9.5 - Prob. 24ECh. 9.5 - Use the method of Exercise 23 to solve the...Ch. 9.5 - Prob. 26ECh. 9.5 - In the circuit shown in Figure 4, a battery...Ch. 9.5 - In the circuit shown in Figure 4, a generator...Ch. 9.5 - Prob. 29ECh. 9.5 - Prob. 30ECh. 9.5 - Let P(t) be the performance level of someone...Ch. 9.5 - Prob. 32ECh. 9.5 - In Section 9.3 we looked at mixing problems in...Ch. 9.5 - A tank with a capacity of 400 L is full of a...Ch. 9.5 - Prob. 35ECh. 9.5 - Prob. 36ECh. 9.5 - Prob. 37ECh. 9.5 - Prob. 38ECh. 9.6 - Prob. 1ECh. 9.6 - Each system of differential equations is a model...Ch. 9.6 - Prob. 3ECh. 9.6 - Lynx eat snowshoe hares and snowshoe hares eat...Ch. 9.6 - Prob. 5ECh. 9.6 - Prob. 6ECh. 9.6 - Prob. 7ECh. 9.6 - Prob. 8ECh. 9.6 - Prob. 10ECh. 9.6 - In Example 1 we used Lotka-Volterra equations to...Ch. 9 - Prob. 1RCCCh. 9 - What can you say about the solutions of the...Ch. 9 - Prob. 3RCCCh. 9 - Prob. 4RCCCh. 9 - Prob. 5RCCCh. 9 - Prob. 6RCCCh. 9 - Prob. 7RCCCh. 9 - Prob. 8RCCCh. 9 - Prob. 9RCCCh. 9 - Determine whether the statement is true or false....Ch. 9 - Prob. 2RQCh. 9 - Determine whether the statement is true or false....Ch. 9 - Prob. 4RQCh. 9 - Prob. 5RQCh. 9 - Determine whether the statement is true or false....Ch. 9 - Prob. 7RQCh. 9 - Prob. 1RECh. 9 - Prob. 2RECh. 9 - Prob. 3RECh. 9 - Prob. 4RECh. 9 - Solve the differential equation. 5. y = xesin x y...Ch. 9 - Prob. 6RECh. 9 - Solve the differential equation. 7. 2yey2y=2x+3xCh. 9 - Prob. 8RECh. 9 - Prob. 9RECh. 9 - Prob. 10RECh. 9 - Prob. 11RECh. 9 - Prob. 12RECh. 9 - Prob. 13RECh. 9 - Prob. 14RECh. 9 - Prob. 15RECh. 9 - Prob. 16RECh. 9 - Prob. 17RECh. 9 - A tank contains 100 L of pure water. Brine that...Ch. 9 - One model for the spread of an epidemic is that...Ch. 9 - The Brentano-Stevens Law in psychology models the...Ch. 9 - The transport of a substance across a capillary...Ch. 9 - Populations of birds and insects are modeled by...Ch. 9 - Prob. 23RECh. 9 - Barbara weighs 60 kg and is on a diet of 1600...Ch. 9 - Prob. 1PCh. 9 - Prob. 2PCh. 9 - Prob. 3PCh. 9 - Find all functions f that satisfy the equation...Ch. 9 - Prob. 5PCh. 9 - Prob. 6PCh. 9 - Prob. 7PCh. 9 - Snow began to fall during the morning of February...Ch. 9 - Prob. 9PCh. 9 - Prob. 10PCh. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Prob. 14PCh. 9 - Prob. 15P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- World Population The following table shows world population N, in billions, in the given year. Year 1950 1960 1970 1980 1990 2000 2010 N 2.56 3.04 3.71 4.45 5.29 6.09 6.85 a. Use regression to find a logistic model for world population. b. What r value do these data yield for humans on planet Earth? c. According to the logistic model using these data, what is the carrying capacity of planet Earth for humans? d. According to this model, when will world population reach 90 of carrying capacity? Round to the nearest year. Note: This represents a rather naive analysis of world population.arrow_forwardThe table shows the mid-year populations (in millions) of five countries in 2015 and the projected populations (in millions) for the year 2025. (a) Find the exponential growth or decay model y=aebt or y=aebt for the population of each country by letting t=15 correspond to 2015. Use the model to predict the population of each country in 2035. (b) You can see that the populations of the United States and the United Kingdom are growing at different rates. What constant in the equation y=aebt gives the growth rate? Discuss the relationship between the different growth rates and the magnitude of the constant.arrow_forwardThe fox population in a certain region has an annualgrowth rate of 9 per year. In the year 2012, therewere 23,900 fox counted in the area. What is the foxpopulation predicted to be in the year 2020 ?arrow_forward
- Define Newton’s Law of Cooling. Then name at least three real-world situations where Newton’s Law of Cooling would be applied.arrow_forwardEastern Pacific Yellowfin Tuna Studies to fit a logistic model to the Eastern Pacific yellowfin tuna population have yielded N=1481+36e2.61t where t is measured in years and N is measured in thousands of tons of fish. a. What is the r value for the Eastern Pacific yellowfin tuna? b. What is the carrying capacity K for the Eastern Pacific yellowfin tuna? c. What is the optimum yield level? d. Use your calculator to graph N versus t. e. At what time was the population growing the most rapidly?arrow_forwardGrowth Rate Versus Weight Ecologists have studied how a populations intrinsic exponential growth rate r is related to the body weight W for herbivorous mammals. In table 5.2, W is the adult weight measured in pounds, and r is growth rate per year. Animal Weight W r Short-tailed vole 0.07 4.56 Norway rat 0.7 3.91 Rue deer 55 0.23 White-tailed deer 165 0.55 American elk 595 0.27 African elephant 8160 0.06 Find a formula that models r as a power function of W, and draw a graph of this function.arrow_forward
- Long-Term Data and the Carrying Capacity This is a continuation of Exercise 13. Ideally, logistic data grow toward the carrying capacity but never go beyond this limiting value. The following table shows additional data on paramecium cells. t 12 13 14 15 16 17 18 19 20 N 610 513 593 557 560 522 565 517 500 a. Add these data to the graph in part b of Exercise 13. b. Comment on the relationship of the data to the carrying capacity. Paramecium Cells The following table is adapted from a paramecium culture experiment conducted by Cause in 1934. The data show the paramecium population N as a function of time t in days. T 2 3 5 6 8 9 10 11 N 14 34 94 189 330 416 507 580 a. Use regression to find a logistic model for this population. b. Make a graph of the model you found in part a. c. According to the model you made in part a, when would the population reach 450?arrow_forwardModeling Human Height with a Logistic Function A male child is 21inches long at birth and grows to an adult height of 73inches. In this exercise, we make a logistic model of his height as a function of age. a. Use the given information to find K and b for the logistic model. b. Suppose he reaches 95 of his adult height at age 16. Use this information and that from part a to find r. Suggestion: You will need to use either the crossing-graphs method or some algebra involving the logarithm. c. Make a logistic model for his height H, in inches, as a function of his age t, in years. d. According to the logistic model, at what age is he growing the fastest? e. Is your answer to part d consistent with your knowledge of how humans grow?arrow_forwardRecall that the general form of a logistic equation for a population is given by P(t)=c1+aebt , such that the initial population at time t=0 is P(0)=P0. Show algebraically that cP(t)P(t)=cP0P0ebt .arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY