Concept explainers
A solid uniform spherical stone starts moving from rest at the top of a hill. At the bottom of the hill the ground curves upward, launching the stone vertically a distance H below its start. How high will the stone go (a) if there is no friction on the hill and (b) if there is enough friction on the hill for the stone to roll without slipping? (c) Why do you get two different answers even though the stone starts with the same gravitational potential energy in both cases?
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
College Physics (10th Edition)
Additional Science Textbook Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Physics: Principles with Applications
University Physics Volume 1
Cosmic Perspective Fundamentals
Essential University Physics (3rd Edition)
University Physics (14th Edition)
- In testing an automobile tire for proper alignment, a technicianmarks a spot on the tire 0.200 m from the center. He then mountsthe tire in a vertical plane and notes that the radius vector to thespot is at an angle of 35.0 with the horizontal. Starting from rest,the tire is spun rapidly with a constant angular acceleration of 3.00 rad/s2. a. What is the angular speed of the wheel after 4.00 s? b. What is the tangential speed of the spot after 4.00 s? c. What is the magnitude of the total accleration of the spot after 4.00 s?" d. What is the angular position of the spot after 4.00 s?arrow_forwardA tennis ball is a hollow sphere with a thin wall. It is set rolling without slipping at 4.03 m/s on a horizontal section of a track as shown in Figure P10.62. It rolls around the inside of a vertical circular loop of radius r = 45.0 cm. As the ball nears the bottom of the loop, the shape of the track deviates from a perfect circle so that the ball leaves the track at a point h = 20.0 cm below the horizontal section. (a) Find the balls speed at the top of the loop. (b) Demonstrate that the ball will not fall from the track at the top of the loop. (c) Find the balls speed as it leaves the track at the bottom. What If? (d) Suppose that static friction between ball and track were negligible so that the ball slid instead of rolling. Would its speed then be higher, lower, or the same at the top of the loop? (e) Explain your answer to part (d). Figure P10.62arrow_forwardFigure P10.82 shows a vertical force applied tangentially to a uniform cylinder of weight Fg. The coefficient of static friction between the cylinder and all surfaces is 0.500. The force P is increased in magnitude until the cylinder begins to rotate. In terms of Fg, find the maximum force magnitude P that can be applied without causing the cylinder to rotate. Suggestion: Show that both friction forces will be at their maximum values when the cylinder is on the verge of slipping. Figure P10.82arrow_forward
- Consider two objects with m1 m2 connected by a light string that passes over a pulley having a moment of inertia of I about its axis of rotation as shown in Figure P10.44. The string does not slip on the pulley or stretch. The pulley turns without friction. The two objects are released from rest separated by a vertical distance 2h. (a) Use the principle of conservation of energy to find the translational speeds of the objects as they pass each other. (b) Find the angular speed of the pulley at this time.arrow_forwardA turntable (disk) of radius r = 26.0 cm and rotational inertia0.400 kg m2 rotates with an angular speed of 3.00 rad/s arounda frictionless, vertical axle. A wad of clay of mass m =0.250 kg drops onto and sticks to the edge of the turntable.What is the new angular speed of the turntable?arrow_forwardThe puck in Figure P11.46 has a mass of 0.120 kg. The distance of the puck from the center of rotation is originally 40.0 cm, and the puck is sliding with a speed of 80.0 cm/s. The string is pulled downward 15.0 cm through the hole in the frictionless table. Determine the work done on the puck. (Suggestion: Consider the change of kinetic energy.) Figure P11.46arrow_forward
- An athlete in a gym applies a constant force of 50 N to the pedals of a bicycle to keep the rotation rate of the wheel at 10 rev/s. The length of the pedal arms is 30 cm. What is the power delivered to the bicycle by the athlete?arrow_forwardA space station is constructed in the shape of a hollow ring of mass 5.00 104 kg. Members of the crew walk on a deck formed by the inner surface of the outer cylindrical wall of the ring, with radius r = 100 m. At rest when constructed, the ring is set rotating about its axis so that the people inside experience an effective free-fall acceleration equal to g. (See Fig. P10.52.) The rotation is achieved by firing two small rockets attached tangentially to opposite points on the rim of the ring. (a) What angular momentum does the space station acquire? (b) For what time interval must the rockets be fired if each exerts a thrust of 125 N? Figure P10.52 Problems 52 and 54.arrow_forwardAn ultracentrifuge accelerates from to 100,000 rpm in 2.00 min. (a) What is the average angular acceleration in rad/s2 ? (b) What is the tangential acceleration of a point 9.50 cm from the axis of rotation? (c) What is the centripetal acceleration in m/s2 and multiples of g of this point at full rpm? (d) What is the total distance travelled by a point 9.5 cm from the axis of totation of the ultracentrifuge?arrow_forward
- Problems 62 and 63 are paired. 62. C A disk is rotating around a fixed axis that passes through its center and is perpendicular to the face of the disk. Consider a point on the rim of the disk (point R) and another point halfway between the center and the rim (point H) at one particular instant. a. How does the angular speed v of the disk at point H compare with the angular speed of the disk at point R? b. How does the tangential speed of the disk at point H compare with the tangential speed of the disk at point R? c. Suppose we pick a point H on the disk at random (by throwing a dart, for example), and we compare the speeds at that point with the speeds at point R. How will the answers to parts (a) and (b) be different? Explain.arrow_forwardA disk 8.00 cm in radius rotates at a constant rate of 1200 rev/min about its central axis. Determine (a) its angular speed in radians per second, (b) the tangential speed at a point 3.00 cm from its center, (c) the radial acceleration of a point on the rim, and (d) the total distance a point on the rim moves in 2.00 s.arrow_forwardWhy is the following situation impossible? A mischievous child goes to an amusement park with his family. On one ride, after a severe scolding from his mother, he slips out of his seat and climbs to the top of the rides structure, which is shaped like a cone with its axis vertical and its sloped sides making an angle of = 20.0 with the horizontal as shown in Figure P6.32. This part of the structure rotates about the vertical central axis when the ride operates. The child sits on the sloped surface at a point d = 5.32 m down the sloped side from the center of the cone and pouts. The coefficient of static friction between the boy and the cone is 0.700. The ride operator does not notice that the child has slipped away from his seat and so continues to operate the ride. As a result, the sitting, pouting boy rotates in a circular path at a speed of 3.75 m/s. Figure P6.32arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning