A flywheel in a motor is spinning at 500.0 rpm when a power failure suddenly occurs. The flywheel has mass 40.0 kg and diameter 75.0 cm. The power is off for 30.0 s, and during this time the flywheel slows down uniformly due to friction in its axle bearings. During the time the power is off, the flywheel makes 200.0 complete revolutions. (a) At what rate is the flywheel spinning when the power comes back on? (b) How long after the beginning of the power failure would it have taken the flywheel to stop if the power had not come back on, and how many revolutions would the wheel have made during this time?
A flywheel in a motor is spinning at 500.0 rpm when a power failure suddenly occurs. The flywheel has mass 40.0 kg and diameter 75.0 cm. The power is off for 30.0 s, and during this time the flywheel slows down uniformly due to friction in its axle bearings. During the time the power is off, the flywheel makes 200.0 complete revolutions. (a) At what rate is the flywheel spinning when the power comes back on? (b) How long after the beginning of the power failure would it have taken the flywheel to stop if the power had not come back on, and how many revolutions would the wheel have made during this time?
A flywheel in a motor is spinning at 500.0 rpm when a power failure suddenly occurs. The flywheel has mass 40.0 kg and diameter 75.0 cm. The power is off for 30.0 s, and during this time the flywheel slows down uniformly due to friction in its axle bearings. During the time the power is off, the flywheel makes 200.0 complete revolutions. (a) At what rate is the flywheel spinning when the power comes back on? (b) How long after the beginning of the power failure would it have taken the flywheel to stop if the power had not come back on, and how many revolutions would the wheel have made during this time?
A high-speed turntable is spinning initially at 600 rpm when a power failure occurs. The power
is off for 25.0 s, and during this time the turntable slows due to internal friction in its axle
bearings. During the time the power is off, the turntable makes 250 complete revolutions.
(a) At what rate (in rpm) is the turntable spinning when the power comes back on?
(b) How many radians has the turntable gone through during the 25.0 s the power is off?
An 800-gram grinding wheel 22.5 cm in diameter is in the shape of a uniform solid disk. (We can ignore the small hole at the center.) When it is in use, it turns at a constant 250 rpm about an axle perpendicular to its face through its center. When the power switch is turned off, you observe that the wheel stops in 47.0 ss with constant angular acceleration due to friction at the axle. What torque does friction exert while this wheel is slowing down?
A disk spins at a rate of 6000 radians every 10 minutes. (a) What is the angular velocity of the disk in rad/s. (b) What is the angular velocity of the wheel in rpm (rotations per minute)?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.