Horizons: Exploring the Universe (MindTap Course List)
14th Edition
ISBN: 9781305960961
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 10RQ
To determine
(a)
The evidence that a star formation occurred recently
To determine
(b)
The evidence that the protostars really exist.
To determine
(c)
The evidence that the Orion region is actively forming stars.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For each problem, use the following values:
c = 3x108 m/s
mass of the sun = 1.989 x 1030 kg
luminosity of the sun = 3.828 x 1026 W
1 AU = 1.496 x 1011 m
1 pc = 3.262 light years = 3.086 x 1016 m
1 year=3.154x107 seconds
Critical density of our Universe (expressed as a mass density): Pcrit =8.7 x 10-27 kg m-³
Critical energy density of our Universe: Ecrit = Pcrit c²
G=6.674 × 10-11 m³.kg-1.s-2
1 eV = 1.60218 x10-19.
Boltzmann constant: kg = 1.381 x 10-23 JK-18.617 × 10-5eV K-1
energy density constant (in Stefan Boltzmann Law): a = 7.566 x 10-16 Jm-3 K-4 -4.7 x 10-³ MeV m-3 K-4
Constant in Wein displacement law: b = 2.898 x 10-3 m K
baryon-to-photon ratio, n = 6 x 10-10
Use the following formula (fitted to data)
M = -4x10-13n
gR
Mo/year
for the mass loss of asymptotic giant branch stars to:
a) explain why L, g (gravity on surface), and R enter the equation the way they do (nominator
or denominator).
b) show that the expression for M is equivalent to
LR
M = -4x10-13n
Mo/year
M
c) estimate the mass loss rate of a star with M = 1 Mo, L = 7000 Lo, T = 3000 K. Assume
n = 1 and use the Stefan-Boltzmann equation to calculate R (in Ro).
How many years? Thank you!
Chapter 9 Solutions
Horizons: Exploring the Universe (MindTap Course List)
Ch. 9 - Prob. 1RQCh. 9 - Why evidence can you cite that the interstellar...Ch. 9 - Prob. 3RQCh. 9 - Prob. 4RQCh. 9 - Prob. 5RQCh. 9 - Prob. 6RQCh. 9 - Prob. 7RQCh. 9 - Prob. 8RQCh. 9 - Prob. 9RQCh. 9 - Prob. 10RQ
Ch. 9 - Prob. 11RQCh. 9 - Prob. 12RQCh. 9 - How does the CNO cycle differ from the...Ch. 9 - Prob. 14RQCh. 9 - Step-by-step, explain how energy flows from the...Ch. 9 - Prob. 16RQCh. 9 - Prob. 17RQCh. 9 - Prob. 18RQCh. 9 - Prob. 19RQCh. 9 - Prob. 20RQCh. 9 - Prob. 1DQCh. 9 - What is your favorite home-cooked meal? In terms...Ch. 9 - Prob. 3DQCh. 9 - How does hydrostatic equilibrium relate to hot-air...Ch. 9 - Prob. 1PCh. 9 - Prob. 2PCh. 9 - Prob. 3PCh. 9 - Prob. 4PCh. 9 - Prob. 5PCh. 9 - Prob. 6PCh. 9 - Prob. 7PCh. 9 - Prob. 8PCh. 9 - Prob. 9PCh. 9 - Prob. 10PCh. 9 - If a protostellar disk is 200 AU in radius and the...Ch. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Prob. 14PCh. 9 - H much energy is produced when the CNO cycle...Ch. 9 - Prob. 16PCh. 9 - Prob. 1LTLCh. 9 - Prob. 2LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The star cluster shown in this image contains a few red giants as well as main-sequence stars ranging from spectral type B to M. Discuss the likelihood that exoplanets orbiting any of these stars might be home to life. (Hint: Estimate the age of the cluster.)arrow_forwardWhy have we learned a lot about star formation since the invention of detectors sensitive to infrared radiation?arrow_forwardStars that have masses approximately 0.8 times the mass of the Sun take about 18 billion years to turn into red giants. How does this compare to the current age of the universe? Would you expect to find a globular cluster with a main-sequence turnoff for stars of 0.8 solar mass or less? Why or why not?arrow_forward
- Two protostars, one 10 times the mass of the Sun and one half the mass of the Sun are born at the same time in a molecular cloud. Which one will be first to reach the main sequence stage, where it is stable and getting energy from fusion?arrow_forwardWe observe a star that is dstar away. How much extinction would there need to be (i.e., what must tau be) if we had ignored intervening dust, and concluded that it was actually 2 * dstar away? Value: dstar = 526 pcarrow_forwardA star's Zero Age Main Sequence (ZAMS) radius R, luminosity L, and effective temperature Teff depend primarily on the star's mass. These parameters do evolve somewhat over time, however, while the star still remains on the main sequence. Discuss in what direction each of these parameters evolves, and explain why this occurs. By physical in your explanation. How did this evolution affect our own solar system, if at all?arrow_forward
- using the center-of-mass equations or the Carter of Mass Calculator (under Binary-Star Basics, abova), you will investigate a specific binary star system. Assume that Star 1 has m, 3.2 solar masses, Star 2 has m,-0.9 solar masses, and the total separation of the two (R) is 34 All (One AU is Earth's average distance from the Sun) (2) What is the distance, d. (In Au) from Star 1 to the center of mass? AU (b) What is the distance, dy On Au) from Star 2 to the center of mass AU ( what is the ratio of d, tod?arrow_forwardWhat evidence is there that star formation has occurred recently?arrow_forward12.1 In a certain part of the North American Nebula, the amount of interstellar extinction in the visual wavelength band is 1.1 magnitudes. The thickness of the nebula is estimated to be 20 pc, and it is located 700 pc from Earth. Suppose that a B spectral class main-sequence star is observed in the direction of the nebula and that the absolute visual magnitude of the star is known to be My = -1.1 from spectroscopic data. Neglect any other sources of extinction between the observer and the nebula. (a) Find the apparent visual magnitude of the star if it is lying just in front of the nebula. (b) Find the apparent visual magnitude of the star if it is lying just behind the nebula. Problems 443 (c) Without taking the existence of the nebula into consideration, based on its apparent mag- nitude, how far away does the star in part (b) appear to be? What would be the percentage error in determining the distance if interstellar extinction were neglected?arrow_forward
- Place the following events in the formation of stars in the proper chronological sequence, with the oldest first and the youngest last. w. the gas and dust in the nebula flatten to a disk shape due to gravity and a steadily increasing rate of angular rotation x. a star emerges when the mass is great enough and the temperature is high enough to trigger thermonuclear fusion in the core y. the rotation of the nebular cloud increases as gas and dust concentrates by gravity within the growing protostar in the center z. some force, perhaps from a nearby supernova, imparts a rotation to a nebular cloud y, then z, then w, then x z, then y, then w, then x w, then y, then z, then x z, then x, then w, then y x, then z, then y, then w MacBook Air on .H. O O O Oarrow_forwardThe Hydra super cluster is at a distance of about 800 MParsec. What is the recessional velocity?arrow_forwardWe observe a star that is dstar away. How much extinction would there need to be (i.e., what must tau(τ) be) if we had ignored intervening dust, and concluded that it was actually 2*dstar away? Value: dstar = 850 pcarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning