Figure 9-32: A block on a horizontal floor is initially either stationary, sliding in the positive direction of an x axis, or sliding in the negative direction of that axis. Then the block explodes into two pieces that slide along the x axis. Assume the block and the two pieces form a closed, isolated system. Six choices for a graph of the momenta of the block and the pieces are given, all versus time t. Determine which choices represent physically impossible situations and explain why.
Figure 9-32 Question 10.
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
WILEY PLUS 1 SEMESTER ACCESS CODE + LOOS
Additional Science Textbook Solutions
Introductory Chemistry (6th Edition)
Campbell Essential Biology (7th Edition)
Cosmic Perspective Fundamentals
Campbell Essential Biology with Physiology (5th Edition)
Chemistry & Chemical Reactivity
Chemistry: The Central Science (14th Edition)
- A proton with an initial speed of 2.00 108 m/s in the x direction collides elastically with another proton initially at rest. The first protons velocity after the collision is 1.64 108 m/s at an angle of 35.0 with the horizontal. What is the velocity of the second proton after the collision?arrow_forwardProblems 44 and 45 are paired. C A model rocket is shot straight up. As it reaches the highest point in its trajectory, it explodes in midair into three pieces with velocities indicated by the arrows in Figure P10.44, as viewed from directly above the explosion. Rank the mass of each piece in order from smallest to largest and justify your answer. FIGURE P10.44 Problems 44 and 45.arrow_forwardIn a laboratory experiment, an electron with a kinetic energy of 50.5 keV is shot toward another electron initially at rest (Fig. P11.50). (1 eV = 1.602 1019 J) The collision is elastic. The initially moving electron is deflected by the collision. a. Is it possible for the initially stationary electron to remain at rest after the collision? Explain. b. The initially moving electron is detected at an angle of 40.0 from its original path. What is the speed of each electron after the collision? FIGURE P11.50arrow_forward
- Initially, ball 1 rests on an incline of height h, and ball 2 rests on an incline of height h/2 as shown in Figure P11.40. They are released from rest simultaneously and collide in the trough of the track. If m2 = 4 m1 and the collision is elastic, find an expression for the velocity of each ball immediately after the collision. FIGURE P11.40 Problems 40 and 41.arrow_forwardA ball of mass 50.0 g is dropped from a height of 10.0 m. It rebounds after losing 75% of its kinetic energy during the collision process. If the collision with the ground took 0.010 s, find the magnitude of the impulse experienced by the ball.arrow_forwardA car crashes into a large tree that does not move. The car goes from 30 m/s to 0 in 1.3 m. (a) What impulse is applied to the driver by the seatbelt, assuming he follows the same motion as the car? (b) What is the average force applied to the driver by the seatbelt?arrow_forward
- From what might be a possible scene in the comic book The X-Men, the Juggernaut (mJ) is charging into Colossus (mC) and the two collide. The initial speed of the Juggernaut is vJi and the initial speed of Colossus is vCi. After the collision, the final speed of the Juggernaut is vJf and the final speed of Colossus is vCf as they each bounce off of the other, heading in opposite directions. a. What is the impulse experienced by the Juggernaut? b. What is the impulse experienced by Colossus? c. In your own words, explain how these impulses must compare with each other and how they are related to the average force each superhero experiences during the collision.arrow_forwardA model rocket engine has an average thrust of 5.26 N. It has an initial mass of 25.5 g, which includes fuel mass of 12.7 g. The duration of its burn is 1.90 s. (a) What is the average exhaust speed of the engine? (b) This engine is placed in a rocket body of mass 53.5 g. What is the final velocity of the rocket if it were to be fired from rest in outer space by an astronaut on a spacewalk? Assume the fuel burns at a constant rate.arrow_forwardA submarine with a mass of 6.26 106 kg contains a torpedo with a mass of 354 kg. The submarine fires the torpedo at an angle of 25 with respect to the horizontal as shown in Figure P10.42. a. If the submarine and the torpedo were initially at rest and the torpedo left the submarine with a speed of 89.2 m/s, what is the recoil speed of the submarine? b. What is the direction of recoil of the submarine? FIGURE P10.42arrow_forward
- In an experiment designed to determine the velocity of a bullet fired by a certain gun, a wooden block of mass M = 500.0 g is supported only by its edges, and a bullet of mass m = 8.00 g is fired vertically upward into the block from close range below. After the bullet embeds itself in the block, the block and the bullet are measured to rise to a maximum height of 25.0 cm above the blocks original position. What is the speed of the bullet just before impact?arrow_forwardThere is a compressed spring between two laboratory carts of masses m1 = 105 g and m2 = 212 g. Initially, the carts are held at rest on a horizontal track (Fig. P10.40A). The carts are released, and the cart of mass m1 has velocity vi=2.035i m/s in the positive x direction (Fig. 10.40B). Assume rolling friction is negligible. a. What is the net external force on the two-cart system? b. Find the velocity of cart 2. FIGURE P10.40 Problems 40 and 41.arrow_forwardA model rocket is shot straight up and explodes at the top of its trajectory into three pieces as viewed from above and shown in Figure P10.44. The masses of the three pieces are mA = 100.0 g, mB = 20.0 g, and mC = 30.0 g. Immediately after the explosion, piece A is traveling at 1.50 m/s, and piece B is traveling at 7.00 m/s in a direction 30 below the negative x axis as shown. What is the velocity of piece C? FIGURE P10.44 Problems 44 and 45. 45. We can use the conservation of momentum (Eq. 10.9). The total initial momentum is zero, so the sum of all the final momenta should be zero. mAvAf+mBvBf+mCvCf=0 This velocities for A and B can be expressed as vectors. vAf=1.50jm/svBf=(7.00im/s)cos30(7.00jm/s)sin30=(6.06i3.50j)m/s We can now solve the momentum equation. (100.0g)(1.50jm/s)+(20.0g)(6.06i3.50j)m/s+(30.0g)vCf=0vCf=(4.04i2.67j)m/s The velocity of piece C is down and to the right as expected.arrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University