Elements Of Modern Algebra
8th Edition
ISBN: 9781285463230
Author: Gilbert, Linda, Jimmie
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 8.2, Problem 32E
To determine
To prove: That every nonzero remainder
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) Use the Euclidean algorithm to compute gcd(a, b).
(b) Determine integers x and y for which
ged(a, b) = ax + by.
Suppose that the function f(x) is continuous everywhere. Suppose further that the points (Xj, Yj), j=1...(n-1) that lie on the graph f(x) , are known to us.
If and we used all the points known to us to construct an interpolating polynomial for the function f(x) , then the interpolating polynomial will have degree
Neville’s Algorithm is used to approximate f (0) using f (−2), f (−1), f (1), and f (2). Supposef (−1) was understated by 2 and f (1) was overstated by 3. Determine the error in the originalcalculation of the value of the interpolating polynomial to approximate f (0).
Chapter 8 Solutions
Elements Of Modern Algebra
Ch. 8.1 - True or False
Label each of the following...Ch. 8.1 - Prob. 2TFECh. 8.1 - Prob. 3TFECh. 8.1 - Prob. 4TFECh. 8.1 - Prob. 5TFECh. 8.1 - Prob. 6TFECh. 8.1 - Prob. 7TFECh. 8.1 - Prob. 1ECh. 8.1 - Prob. 2ECh. 8.1 - Prob. 3E
Ch. 8.1 - Consider the following polynomial over Z9, where a...Ch. 8.1 - 5. Decide whether each of the following subset is...Ch. 8.1 - Determine which subset in Exercise 5 are ideals of...Ch. 8.1 - Prove that [ x ]={ a0+a1x+...+anxna0=2kfork }, the...Ch. 8.1 - Prob. 8ECh. 8.1 - Prob. 9ECh. 8.1 - Let R be a commutative ring with unity. Prove that...Ch. 8.1 - 11. a. List all the polynomials in that have...Ch. 8.1 - a. Find a nonconstant polynomial in Z4[ x ], if...Ch. 8.1 - Prob. 13ECh. 8.1 - 14. Prove or disprove that is a field if is a...Ch. 8.1 - 15. Prove that if is an ideal in a commutative...Ch. 8.1 - a. If R is a commutative ring with unity, show...Ch. 8.1 - Prob. 17ECh. 8.1 - 18. Let be a commutative ring with unity, and let...Ch. 8.1 - Prob. 19ECh. 8.1 - Consider the mapping :Z[ x ]Zk[ x ] defined by...Ch. 8.1 - Describe the kernel of epimorphism in Exercise...Ch. 8.1 - Assume that each of R and S is a commutative ring...Ch. 8.1 - Describe the kernel of epimorphism in Exercise...Ch. 8.1 - Prob. 24ECh. 8.1 - (See exercise 24.) Show that the relation...Ch. 8.2 - Label each of the following statements as either...Ch. 8.2 - Prob. 2TFECh. 8.2 - Prob. 3TFECh. 8.2 - Prob. 1ECh. 8.2 - Prob. 2ECh. 8.2 - Prob. 3ECh. 8.2 - For , , and given in Exercises 1-6, find and in...Ch. 8.2 - Prob. 5ECh. 8.2 - For , , and given in Exercises 1-6, find and in...Ch. 8.2 - Prob. 7ECh. 8.2 - Prob. 8ECh. 8.2 - Prob. 9ECh. 8.2 - Prob. 10ECh. 8.2 - For f(x), g(x), and Zn[ x ] given in Exercises...Ch. 8.2 - For f(x), g(x), and Zn[ x ] given in Exercises...Ch. 8.2 - Prob. 13ECh. 8.2 - Prob. 14ECh. 8.2 - Prob. 15ECh. 8.2 - Prob. 16ECh. 8.2 - Prob. 17ECh. 8.2 - Prob. 18ECh. 8.2 - Prob. 19ECh. 8.2 - Prob. 20ECh. 8.2 - Prob. 21ECh. 8.2 - Prob. 22ECh. 8.2 - Prob. 23ECh. 8.2 - Prob. 24ECh. 8.2 - Prob. 25ECh. 8.2 - Prob. 26ECh. 8.2 - Prob. 27ECh. 8.2 - Prob. 28ECh. 8.2 - Prob. 29ECh. 8.2 - Prob. 30ECh. 8.2 - Prob. 31ECh. 8.2 - Prob. 32ECh. 8.2 - Prob. 33ECh. 8.2 - Prob. 34ECh. 8.2 - Prob. 35ECh. 8.3 - True or False
Label each of the following...Ch. 8.3 - Label each of the following statements as either...Ch. 8.3 - Prob. 3TFECh. 8.3 - True or False
Label each of the following...Ch. 8.3 - Prob. 5TFECh. 8.3 - Prob. 6TFECh. 8.3 - Prob. 7TFECh. 8.3 - True or False
Label each of the following...Ch. 8.3 - Prob. 9TFECh. 8.3 - Prob. 1ECh. 8.3 - Let Q denote the field of rational numbers, R the...Ch. 8.3 - Find all monic irreducible polynomials of degree 2...Ch. 8.3 - Write each of the following polynomials as a...Ch. 8.3 - Let F be a field and f(x)=a0+a1x+...+anxnF[x]....Ch. 8.3 - Prove Corollary 8.18: A polynomial of positive...Ch. 8.3 - Corollary requires that be a field. Show that...Ch. 8.3 - Let be an irreducible polynomial over a field ....Ch. 8.3 - Let be a field. Prove that if is a zero of then...Ch. 8.3 - Prob. 10ECh. 8.3 - Prob. 11ECh. 8.3 - Prob. 12ECh. 8.3 - Prob. 13ECh. 8.3 - Prob. 14ECh. 8.3 - Prob. 15ECh. 8.3 - Prob. 16ECh. 8.3 - Suppose that f(x),g(x), and h(x) are polynomials...Ch. 8.3 - Prove that a polynomial f(x) of positive degree n...Ch. 8.3 - Prove Theorem Suppose is an irreducible...Ch. 8.3 - Prove Theorem If and are relatively prime...Ch. 8.3 - Prove the Unique Factorization Theorem in ...Ch. 8.3 - Let ab in a field F. Show that x+a and x+b are...Ch. 8.3 - Let f(x),g(x),h(x)F[x] where f(x) and g(x) are...Ch. 8.3 - Prob. 24ECh. 8.3 - Prob. 25ECh. 8.3 - Prob. 26ECh. 8.3 - Prob. 27ECh. 8.4 - Label each of the following statements as either...Ch. 8.4 - Prob. 2TFECh. 8.4 - Prob. 3TFECh. 8.4 - Prob. 4TFECh. 8.4 - Prob. 5TFECh. 8.4 - Prob. 6TFECh. 8.4 - Prob. 7TFECh. 8.4 - Prob. 8TFECh. 8.4 - Prob. 9TFECh. 8.4 - Prob. 10TFECh. 8.4 - True or False
Label each of the following...Ch. 8.4 - Prob. 12TFECh. 8.4 - Prob. 13TFECh. 8.4 - Prob. 14TFECh. 8.4 - Prob. 15TFECh. 8.4 - 1. Find a monic polynomial of least degree over ...Ch. 8.4 - One of the zeros is given for each of the...Ch. 8.4 - Prob. 3ECh. 8.4 - Prob. 4ECh. 8.4 - Prob. 5ECh. 8.4 - Prob. 6ECh. 8.4 - Prob. 7ECh. 8.4 - Prob. 8ECh. 8.4 - Prob. 9ECh. 8.4 - Prob. 10ECh. 8.4 - Prob. 11ECh. 8.4 - Prob. 12ECh. 8.4 - Factor each of the polynomial in Exercise as a...Ch. 8.4 - Factor each of the polynomial in Exercise as a...Ch. 8.4 - Prob. 15ECh. 8.4 - Factors each of the polynomial in Exercise 1316 as...Ch. 8.4 - Prob. 17ECh. 8.4 - Show that the converse of Eisenstein’s...Ch. 8.4 - Prob. 19ECh. 8.4 - Prob. 20ECh. 8.4 - Use Theorem to show that each of the following...Ch. 8.4 - Prob. 22ECh. 8.4 - Prove that for complex numbers .
Ch. 8.4 - Prob. 24ECh. 8.4 - Prob. 25ECh. 8.4 - Prob. 26ECh. 8.4 - Prob. 27ECh. 8.4 - Prob. 28ECh. 8.4 - Prob. 29ECh. 8.4 - Prob. 30ECh. 8.4 - Prob. 31ECh. 8.4 - Prob. 32ECh. 8.4 - Let where is a field and let . Prove that if is...Ch. 8.4 - Prob. 34ECh. 8.4 - Prob. 35ECh. 8.5 - Prob. 1TFECh. 8.5 - Prob. 2TFECh. 8.5 - Prob. 3TFECh. 8.5 - Prob. 4TFECh. 8.5 - Prob. 1ECh. 8.5 - Prob. 2ECh. 8.5 - Prob. 3ECh. 8.5 - Prob. 4ECh. 8.5 - Prob. 5ECh. 8.5 - Prob. 6ECh. 8.5 - In Exercises , use the techniques presented in...Ch. 8.5 - Prob. 8ECh. 8.5 - Prob. 9ECh. 8.5 - Prob. 10ECh. 8.5 - Prob. 11ECh. 8.5 - Prob. 12ECh. 8.5 - Prob. 13ECh. 8.5 - Prob. 14ECh. 8.5 - Prob. 15ECh. 8.5 - Prob. 16ECh. 8.5 - Prob. 17ECh. 8.5 - Prob. 18ECh. 8.5 - Prob. 19ECh. 8.5 - Prob. 20ECh. 8.5 - Prob. 21ECh. 8.5 - Prob. 22ECh. 8.5 - Prob. 23ECh. 8.5 - Prob. 24ECh. 8.5 - Prob. 25ECh. 8.5 - Prob. 26ECh. 8.5 - Prob. 27ECh. 8.5 - Prob. 28ECh. 8.5 - Prob. 29ECh. 8.5 - Prob. 30ECh. 8.5 - Derive the quadratic formula by using the change...Ch. 8.5 - Prob. 32ECh. 8.6 - True or False
Label each of the following...Ch. 8.6 - Prob. 2TFECh. 8.6 - Prob. 3TFECh. 8.6 - Prob. 1ECh. 8.6 - Prob. 2ECh. 8.6 - Prob. 3ECh. 8.6 - In Exercises, a field , a polynomial over , and...Ch. 8.6 - In Exercises , a field , a polynomial over , and...Ch. 8.6 - In Exercises , a field , a polynomial over , and...Ch. 8.6 - Prob. 7ECh. 8.6 - If is a finite field with elements, and is a...Ch. 8.6 - Construct a field having the following number of...Ch. 8.6 - Prob. 10ECh. 8.6 - Prob. 11ECh. 8.6 - Prob. 12ECh. 8.6 - Prob. 13ECh. 8.6 - Prob. 14ECh. 8.6 - Prob. 15ECh. 8.6 - Each of the polynomials in Exercises is...Ch. 8.6 - Prob. 17ECh. 8.6 - Prob. 18E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Find all monic irreducible polynomials of degree 2 over Z3.arrow_forwardLet f(x),g(x),h(x)F[x] where f(x) and g(x) are relatively prime. If h(x)f(x), prove that h(x) and g(x) are relatively prime.arrow_forwardAssume the polynomial P5(x) interpolates a function f(x) at the six data points (xi, f(xi)) with x-coordinates ₁ = 0.0, 2 0.0, x2 = 0.2, x3 = 0.4, x4 = 0.6, x5 = 0.8, x6 = 1.0. Assume that the interpolation error at x = 0.3 is |f(0.3) - P5(0.3)| = 0.01. Estimate the new interpolation error |ƒ(0.3) — P7(0.3)| that would result if two additional interpolation points - (x7, y7) = (0.1, f(0.1)) and (x8, ys) = (0.5, f(0.5)) are added. What assumptions have you made to produce this estimate?arrow_forward
- 2.6 Let f(x) = x² + ax+b € Z[x] be a quadratic polynomial with integer coefficients, for example, f(x) = x² + x + 6. Formulate a conjecture about when the set {f(n): ne Z and f(n) is prime} is infinite. Give numerical evidence that supports your conjecture.arrow_forwardThere is at most one polynomial of degree less than or equal to n which interpolates f(x) at (n+1) distinct points x0,x1,..Xn b. which interpolates f(x) at (n-1) distinct points x0,x1,...Xn-1 which interpolates f(x) at n distinct points x0,x1,.Xn-2 which interpolates f(x) at (n-1) distinct points x0,x1,...Xn-3 а. с.arrow_forwardLet Q(x) be any polynomial of degree ≤n with real coefficients and let M be the maximum of Q(x)| on the interval [-1, 1]. Show then that |Q(x)| ≤ MTn (x)| for any |x|> 1. This is due to Chebyshev (1881).arrow_forward
- [10] 1. Prove that that the natural numbers with the binary operation of multiplication (as defined in the video) forms a commutative monoid. Furthermore, prove that multiplication distributes over addition. Hint: First, you need to use induction to prove that given function f: X→X, (f")" = (fm)" || [10] 2. Use induction to prove 1+4+9+...+n² = n(n+1)(2n+1) 6.arrow_forward6. Use the fact that every odd degree polynomial with real coefficients has a real root to show that the function f : R –R defined by f (x) = x³ – 2x2 + x for x E R is onto. Is f one-to-one? Bonus: Let A = {a, b, c} be a set and P(A) be the power set of A. Define f : P (A) - by the rule f (A): Is f one-to-one? If so, prove it. Otherwise, give an counterexample. number of elements of A.arrow_forwardProve that for n = 2, H(X) is maximal when p₁ = P₂ = ¹/2.arrow_forward
- A list adversary for a function f : {0,1}" → {0,1}' gets input y E {0, 1}', and outputs a list L = L(y) of a polynomial number of strings in {0,1}". The success probability of a list adversary is Pr r E L(f(x))]. rt{0,1}n Prove that if f is a one-way function, then all PPT list adversaries have negligible success probability.arrow_forward1- Consider the (7,4) Hamming code defined by the generator polynomial g(X) = 1 + X + X³ The codeword 0111001 is sent over a noisy channel, producing the received word 0101001 that has a single error. Determine the syndrome polynomial s(X) for this received word, and show that it is identical to the error polynomial e(X). 2- The generator polynomial of a (15, 11) Hamming code is defined by g(X) = 1 + X + X4 Develop the encoder and syndrome calculator for this code, using a systematic form for the code.arrow_forwardShow that every polynomial of degree n:y = f(x) = cnxn + cn-1xn-1 + . . . + c2x2 + c1x + c0is a function by mathematical induction on degree n.Assume n is a nonnegative integer, all cis are real, cn ≠ 0, and x and y are also real. Some hints: use the definition: f is a function iff a = b implies f(a) = f(b) and recall that in informal proofs we show an implication by assuming the if part of the implication, and then deducing the then part of the implication. The base case will show that a = b implies f(a) = f(b) when f(x) = c0 (a constant function). The inductive case will assume a = b implies f(a) = f(b) for degree k, and will deduce it is also true for degree k+1.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Algebraic Complexity with Less Relations; Author: The University of Chicago;https://www.youtube.com/watch?v=ZOKM1JPz650;License: Standard Youtube License
Strassen's Matrix Multiplication - Divide and Conquer - Analysis of Algorithm; Author: Ekeeda;https://www.youtube.com/watch?v=UnpySHwAJsQ;License: Standard YouTube License, CC-BY
Trigonometric Equations with Complex Numbers | Complex Analysis #6; Author: TheMathCoach;https://www.youtube.com/watch?v=zdD8Dab1T2Y;License: Standard YouTube License, CC-BY