Principles of Instrumental Analysis
Principles of Instrumental Analysis
7th Edition
ISBN: 9781305577213
Author: Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher: Cengage Learning
bartleby

Concept explainers

Question
100%
Book Icon
Chapter 8, Problem 8.9QAP
Interpretation Introduction

(a)

Interpretation:

Comparison of ratio of atoms or ions in 3p states and in ground state of Na atom and Mg+ is to be done when there is a natural gas air flame of temperature 1800 K.

Concept introduction:

Boltzmann equation is used for the calculation of the ratio. This equation tells that how much an atom or ion is populated as a function of temperature. This equation is given as-

NjNo=gjgoexp(EjkT) ......... (1)

And the calculation of energy of atom and ion is done by the following formula-

Ej=hcλ ......... (2)

Where,

h= Planck’s constant

c = light velocity

λ= wavelength

Ej= energy difference of excited state and ground state

Interpretation Introduction

(b)

Interpretation:

Comparison of ratio of atoms or ions in 3p states and in ground state of Na atom and Mg+ is to be done when there is a hydrogen - oxygen flame of 2950K.

Concept introduction:

Boltzmann equation is used for the calculation of the ratio. This equation tells that how much an atom or ion is populated as a function of temperature. This equation is given as-

NjNo=gjgoexp(EjkT) ......... (1)

And the calculation of energy of atom and ion is done by the following formula-

Ej=hcλ ......... (2)

Where,

h= Planck’s constant

c = light velocity

λ= wavelength

Ej= energy difference of excited state and ground state.

Interpretation Introduction

(c)

Interpretation:

Comparison of ratio of atoms or ions in 3p states and in ground state of Na atom and Mg+ is to be done when there is an inductively −coupled plasma source of 7250 K.

Concept introduction:

Boltzmann equation is used for the calculation of the ratio. This equation tells that how much an atom or ion is populated as a function of temperature. This equation is given as-

NjNo=gjgoexp(EjkT) ......... (1)

And the calculation of energy of atom and ion is done by the following formula-

Ej=hcλ ......... (2)

Where,

h= Planck’s constant

c = light velocity

λ= wavelength

Ej= energy difference of excited state and ground state.

Blurred answer
Students have asked these similar questions
Consider a collection of 10,000 atoms of rubidium-87, confined inside a box of volume (10-5 m)3. Suppose that T = 0.9Tc. How many atoms are in the ground state? How close is the chemical potential to the ground-state energy? How many atoms are in each of the (threefold-degenerate) first excited states?
(V) Consider solid and liquid samples of equal mass and heat capacity. If microwaves are fired at both samples, which one will increase in temperature faster? (VI) Using the Heisenberg uncertainty principle, calculate the frequency spread Av for a nanosec- ond (10-9 s) pulse from a CO2 laser, in which the nominal photon energy is hv = 0.112 eV.
2.9 Vibrations in crystals. (a) Calculate the average vibrational energy per mole for Si at 400 K to within the limits of the Einstein theory. Let VẸ = 12 x 1012 s-1, (b) If each atom carried three quanta of vibrational energy, how much vibrational energy would the crystal contain?
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:9781285640686
Author:Skoog
Publisher:Cengage