Engineering Electromagnetics
Engineering Electromagnetics
9th Edition
ISBN: 9780078028151
Author: Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher: Mcgraw-hill Education,
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 8, Problem 8.9P

A current of-100az A/m flows on the conducting cylinder p = 5 mm, and +500az A/m is present on the conducting cylinder p = 1 mm. Find the magnitude of the total force per meter length that is acting to split the outer cylinder apart along its length.

Blurred answer
Students have asked these similar questions
A magnetic core with an air gap is shown below. For a relative permeability is 3500, and the space free permeability is 4TTX10-7 H/m. Find the reluctance of the left leg and the top side of the core. Ignore the gap in your calculations. 10 cm 0.1 cm gap 20 cm 5 cm 5 cm 40 cm 5 cm core depth = 10 cm Select one: O a. Rieft = 1251 A.t./Wb , Rtop = 1023 A.t/Wb O b. None O c. Rieft = 12.51 KA.t./Wb , Reop = 10.23 KA.t/Wb O d. Rieft = 125.1 A.t./Wb , Rtop = 102.3 A.t/Wb
Figure 1 shows a ferromagnetic core with a relative permeability of 1850, the depth of the core is 10 cm. The air gap on the core is 0.2 cm with effective area 5 % larger than their physical size due to fringing effects. Given the number of turns N = 500 and current i = 2 x, where x is the last digit of your student ID (example: EEE1705590, then i = 20 A): (a) Find the total reluctance of the core and air gap. [CLO1-PL01:C2] (b) Find the flux density of the air gap. [CLO1-PLO1:C2] 13 cm 23 cm 9 cm 5.6 сm Air gap 31 cm N turns 7 cm Figure 1
> Figure 1 shows a ferromagnetic core whose mean path length is 40 cm. There is a small gap of 0.05 cm in the structure of the otherwise whole core. The cross-sectional area of the core is 12cm?, the relative permeability of the core is 4000 and the coil of wire on the core has 400 turns. Assume that fringing in the air gap increases the effective cross-sectional area of the air gap by 5 percent. Given this information. Find the total reluctance of the flux path (iron plus air gap) and the current required to produce a flux density of 0.5 T in the air gap. N=400 0.05 cm A-12 cm - 40 cm Figure 1

Chapter 8 Solutions

Engineering Electromagnetics

Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Electric Charge and Electric Fields; Author: Professor Dave Explains;https://www.youtube.com/watch?v=VFbyDCG_j18;License: Standard Youtube License