Elementary Principles of Chemical Processes, Binder Ready Version
Elementary Principles of Chemical Processes, Binder Ready Version
4th Edition
ISBN: 9781118431221
Author: Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher: WILEY
bartleby

Videos

Textbook Question
Book Icon
Chapter 8, Problem 8.76P

A mixture containing 35.0 mole% n-butane and the balance isobutane at 10°C enters a heat exchanger at a rate of 24.5 kmol/h and a pressure high enough for the mixture to be a liquid. The exchanger has been designed to heat and vaporize the liquid and heat the vapor mixture to 180°C. The heating fluid is a high molecular weight liquid with a constant heat capacity Cp= 2.62 kJ/(kg·°C). It enters the exchanger at 215°C and flows countercurrently to the hydrocarbon mixture.

  1. Estimate the minimum pressure (bar) required for the hydrocarbon feed to be a liquid.

Assuming that the heat capacities and heats of vaporization of n-butane and isobutane are independent of pressure (so that the values in Tables B.l and B.2 may be used), calculate the enthalpy change Δ H ˙ ( k J / h ) undergone by the hydrocarbon mixture in the heat exchanger. Show the process paths you use for n-butane and /-butane in your calculation. (Hint: Since you don’t have heat capacities for liquid n-butane and /-butane in this text, use process paths that don't require them.)According to the heat exchanger design calculations, the heating fluid exit temperature should be 45°C. Assuming that all the heat lost by the heating fluid is transferred to the hydrocarbon mixture, what is the required mass flow rate of die heating fluid, m ˙ h f ( k g / h )

  • ?
  • When the heat exchanger is run with m ˙ h f
  • equal to the value calculated in Part (b), the exit temperature of the hydrocarbon mixture is measured and found to be only 155°C instead of the design value of 180°C. The process operator observes that the outside of the exchanger is hot to the touch, indicating that some of the heat lost by the heating fluid is escaping into the plant instead of being transferred to the hydrocarbon mixture. After discussing the situation with a production engineer, the operator gradually increases the flow rate of the heating fluid while continuing to monitor the outlet temperature of the hydrocarbon. When the flow rate reaches 2540 kg/h, the outlet fluid temperatures level out at their design values (180°C for the hydrocarbon and 45°C for the heating fluid). At what rate (kJ/h) is heat being transferred from the exchanger to the plant air?
  • When the heating fluid leaves the exchanger, it passes through a heater, which raises its temperature back to 215°C, and is recycled back to the exchanger. How is the profitability of the process being decreased by the heat loss from the exchanger to the surroundings? (Try to think of two costs that result from the heat loss.)
  • The engineer proposes adding more insulation to the heat exchanger, which would cut down on die heat loss and reduce the required heating fluid flow rate. What are advantages and disadvantages of the two responses to the heat loss problem (adding insulation versus increasing the heating fluid flow rate)? Which would you guess would be the preferable response in the long run, and why?
  • Blurred answer
    Students have asked these similar questions
    (30) 6. In a process design, the following process streams must be cooled or heated: Stream No mCp Temperature In Temperature Out °C °C kW/°C 1 5 350 270 2 9 270 120 3 3 100 320 4 5 120 288 Use the MUMNE algorithm for heat exchanger networks with a minimum approach temperature of 20°C. (5) a. Determine the temperature interval diagram. (3) (2) (10) (10) b. Determine the cascade diagram, the pinch temperatures, and the minimum hot and cold utilities. c. Determine the minimum number of heat exchangers above and below the pinch. d. Determine a valid heat exchange network above the pinch. e. Determine a valid heat exchange network below the pinch.
    Use this equation to solve it.
    Q1: Consider the following transfer function G(s) 5e-s 15s +1 1. What is the study state gain 2. What is the time constant 3. What is the value of the output at the end if the input is a unit step 4. What is the output value if the input is an impulse function with amplitude equals to 3, at t=7 5. When the output will be 3.5 if the input is a unit step

    Chapter 8 Solutions

    Elementary Principles of Chemical Processes, Binder Ready Version

    Ch. 8 - Chlorine gas is to be heated front 120°C and 1 atm...Ch. 8 - Prob. 8.12PCh. 8 - Prob. 8.13PCh. 8 - Prob. 8.14PCh. 8 - Use the enthalpy function of APEx to calculate...Ch. 8 - A stream of carbon monoxide flowing at 300 kg/min...Ch. 8 - Prob. 8.17PCh. 8 - Prob. 8.18PCh. 8 - Prob. 8.19PCh. 8 - Prob. 8.20PCh. 8 - Prob. 8.21PCh. 8 - Calculate the heat transfer (kJ) required to cool...Ch. 8 - Twenty liters of liquid n-propyl benzoate...Ch. 8 - Prob. 8.24PCh. 8 - Prob. 8.25PCh. 8 - Prob. 8.26PCh. 8 - A fuel gas containing 95 mole% methane and the...Ch. 8 - Prob. 8.28PCh. 8 - Prob. 8.29PCh. 8 - Ever wonder why espresso costs much more per cup...Ch. 8 - Prob. 8.31PCh. 8 - Saturated steam at 300°C is used to heat a...Ch. 8 - Pure ethane is burned completely with preheated...Ch. 8 - An adiabatic membrane separation unit is used to...Ch. 8 - A gas containing water vapor has a dry-basis...Ch. 8 - Prob. 8.36PCh. 8 - Prob. 8.37PCh. 8 - Prob. 8.38PCh. 8 - In the manufacture of nitric acid, ammonia and...Ch. 8 - A natural gas containing 95 mole% methane and the...Ch. 8 - The heat capacity at constant pressure of a gas is...Ch. 8 - Prob. 8.42PCh. 8 - Prob. 8.43PCh. 8 - Prob. 8.44PCh. 8 - Calculate the heat of vaporization of water...Ch. 8 - Polyvinylpyrrolidone (PVP) is a polymer product...Ch. 8 - Benzene vapor at 480°C is cooled and converted to...Ch. 8 - Prob. 8.48PCh. 8 - Prob. 8.49PCh. 8 - Prob. 8.50PCh. 8 - Prob. 8.51PCh. 8 - Prob. 8.52PCh. 8 - Prob. 8.53PCh. 8 - A stream of pure cyclopentane vapor flowing at a...Ch. 8 - Prob. 8.55PCh. 8 - Prob. 8.57PCh. 8 - A gas stream containing n-hexane in nitrogen with...Ch. 8 - A mixture of n-hexane vapor and air leaves a...Ch. 8 - An equimolar liquid mixture of n-pentane and...Ch. 8 - A liquid stream containing 50.0 mole% benzene and...Ch. 8 - Prob. 8.63PCh. 8 - Prob. 8.64PCh. 8 - Prob. 8.65PCh. 8 - Prob. 8.66PCh. 8 - An aqueous slurry at 30°C containing 20.0 wt%...Ch. 8 - Prob. 8.68PCh. 8 - Prob. 8.69PCh. 8 - A liquid is placed in a wcll-insulatcd container,...Ch. 8 - A small pharmaceutical firm plans to manufacture a...Ch. 8 - Freeze drying is a technique for dehydrating...Ch. 8 - The manufacturers of a new oatmeal product want to...Ch. 8 - Freeze concentration is used to produce a...Ch. 8 - A mixture containing 35.0 mole% n-butane and the...Ch. 8 - A liquid mixture of benzene and toluene containing...Ch. 8 - Prob. 8.79PCh. 8 - An outside-air sample is taken on a day when the...Ch. 8 - Prob. 8.83PCh. 8 - Prob. 8.84PCh. 8 - Prob. 8.85PCh. 8 - Wet solids pass through a continuous dryer. Hot...Ch. 8 - Prob. 8.88PCh. 8 - Prob. 8.93PCh. 8 - The heat of solution of ammonia in water at 1 atm...Ch. 8 - Prob. 8.96PCh. 8 - Sodium hydroxide is dissolved in enough water to...Ch. 8 - A sulfuric acid solution is labeled 8 N (where 1 N...Ch. 8 - You are about to dilute 2.00 mol of 100% sulfuric...Ch. 8 - Prob. 8.100PCh. 8 - A 0.1 mole% caustic soda (NaOH) solution is to be...Ch. 8 - Prob. 8.102PCh. 8 - Ortho-phosphoric acid (H3PO4) is produced as a...Ch. 8 - Prob. 8.104PCh. 8 - Fifty milliliters of 100% H2SO4 at 25°C and 84.2...Ch. 8 - Prob. 8.106PCh. 8 - One g-mole of pure liquid sulfuric acid at...Ch. 8 - Prob. 8.108PCh. 8 - Prob. 8.110PCh. 8 - Prob. 8.111PCh. 8 - Taking as references pure liquid sulfuric acid at...Ch. 8 - Prob. 8.113PCh. 8 - An NH3-H2O mixture containing 60wt% NH3 is brought...Ch. 8 - Prob. 8.115P
    Knowledge Booster
    Background pattern image
    Chemical Engineering
    Learn more about
    Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
    Similar questions
    SEE MORE QUESTIONS
    Recommended textbooks for you
    Text book image
    Introduction to Chemical Engineering Thermodynami...
    Chemical Engineering
    ISBN:9781259696527
    Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
    Publisher:McGraw-Hill Education
    Text book image
    Elementary Principles of Chemical Processes, Bind...
    Chemical Engineering
    ISBN:9781118431221
    Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
    Publisher:WILEY
    Text book image
    Elements of Chemical Reaction Engineering (5th Ed...
    Chemical Engineering
    ISBN:9780133887518
    Author:H. Scott Fogler
    Publisher:Prentice Hall
    Text book image
    Process Dynamics and Control, 4e
    Chemical Engineering
    ISBN:9781119285915
    Author:Seborg
    Publisher:WILEY
    Text book image
    Industrial Plastics: Theory and Applications
    Chemical Engineering
    ISBN:9781285061238
    Author:Lokensgard, Erik
    Publisher:Delmar Cengage Learning
    Text book image
    Unit Operations of Chemical Engineering
    Chemical Engineering
    ISBN:9780072848236
    Author:Warren McCabe, Julian C. Smith, Peter Harriott
    Publisher:McGraw-Hill Companies, The
    Mod-01 Lec-23 Degrees of freedom analysis; Author: nptelhrd;https://www.youtube.com/watch?v=c4h85JjrkzQ;License: Standard YouTube License, CC-BY
    Introduction to Degrees of Freedom; Author: LearnChemE;https://www.youtube.com/watch?v=tW1ft4y5fQY;License: Standard Youtube License