8.1. The specific internal energy of formaldehyde (HCHO) vapor at 1 atm and moderate temperatures is given by the formula
where T is in °C.
Calculate the specific internal energies of formaldehyde vapor at 0°C and 200°C. What reference temperature was used to generate the given expression for
- ?
- The value of U calculated for 200°C is not the true value of the specific internal energy of formaldehyde vapor at this condition. Why not? (Him: Refer back to Section 7.5a.) Briefly state the physical significance of the calculated quantity.
- Use the closed system energy balance to calculate the heat (J) required to raise the temperature of 3.0 mol HCHO at constant volume from 0°C to 200°C. List all of your assumptions. From the definition of heat capacity at constant volume, derive a formula for
Then use this formula and Equation 8.3-6 to calculate the heat (J) required to raise the temperature of 3.0 mol of HCHO(v) at constant volume from 0°C to 200°C. [You should get the same result you got in Part (c).]
(a)
Interpretation:
The specific internal energies of formaldehyde vapor and the temperature should be calculated.
Concept introduction:
In the thermodynamic closed system, the exchange of matter does not take place but heat can be exchanged and thus, the work done by the system is considered to be zero.
The specific internal energy of formaldehyde Vapor is given by:
Where T= temperature of formaldehyde
Answer to Problem 8.1P
Explanation of Solution
Calculate the internal energy of formaldehyde at 0 and 200° C as,
Since the reference temperature is that temperature at which internal energy becomes zero.
The reference temperature is
(b)
Interpretation:
The importance of calculated quantity should be explained.
Concept introduction:
Thermodynamic closed system in which no exchange of matter takes place but the exchange of heat occurs then the work done by the system is considered to be zero.
The specific internal energy of formaldehyde Vapor is given by:
Where T= temperature of formaldehyde
Explanation of Solution
The calculation of the absolute value of internal energy for a process material is not possible. However, it is possible to estimate the change in internal energy for a defined change of state like solid, liquid or gas.
In part (a) calculation, the change in internal energy is calculated with references to 0 °C.
(c)
Interpretation:
The heat required to raise the temperature for the given range by stating the assumptions should be calculated.
Concept introduction:
Thermodynamic closed system in which no exchange of matter takes place, but the exchange of heat occurs then the work done by the system is zero.
The specific internal energy of formaldehyde Vapor is given by:
Where T= temperature of formaldehyde
Answer to Problem 8.1P
- Work done by the system is zero.
- Potential energy drop is zero.
- Kinetic energy drop is also 0.
- No moving parts in the system.
- There is no energy transfer to and from the system
Explanation of Solution
From total energy balance,
Since the kinetic energy, potential energy and the work done are zero.
Using part (a),
Therefore, total energy for the system is,
Assumptions.
- Work done by the system is zero.
- Potential energy drop is zero.
- Kinetic energy drop is also 0.
- No moving parts in the system.
- There is no energy transfer to and from the system
(d)
Interpretation:
A formula for Cv should be derived and it should be used to calculate the heat required for the given case.
Concept introduction:
Thermodynamic closed system in which no exchange of matter takes place, but the exchange of heat occurs then the work done by the system is zero.
The specific internal energy of formaldehyde Vapor is given by:
Where T= temperature of formaldehyde
Answer to Problem 8.1P
Explanation of Solution
Use the given equation,
Differentiate both sides,
Rearranging the above equation,
At constant volume,
Apply the given values as,
Differentiate the equation as,
Finally, calculate the change of moles for the given case as,
Want to see more full solutions like this?
Chapter 8 Solutions
ELEM.PRINCIPLES OF CHEMICAL PROCESSES
Additional Engineering Textbook Solutions
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
Modern Database Management
Java: An Introduction to Problem Solving and Programming (8th Edition)
Starting Out With Visual Basic (8th Edition)
Electric Circuits. (11th Edition)
Management Information Systems: Managing The Digital Firm (16th Edition)
- (30) 6. In a process design, the following process streams must be cooled or heated: Stream No mCp Temperature In Temperature Out °C °C kW/°C 1 5 350 270 2 9 270 120 3 3 100 320 4 5 120 288 Use the MUMNE algorithm for heat exchanger networks with a minimum approach temperature of 20°C. (5) a. Determine the temperature interval diagram. (3) (2) (10) (10) b. Determine the cascade diagram, the pinch temperatures, and the minimum hot and cold utilities. c. Determine the minimum number of heat exchangers above and below the pinch. d. Determine a valid heat exchange network above the pinch. e. Determine a valid heat exchange network below the pinch.arrow_forwardUse this equation to solve it.arrow_forwardQ1: Consider the following transfer function G(s) 5e-s 15s +1 1. What is the study state gain 2. What is the time constant 3. What is the value of the output at the end if the input is a unit step 4. What is the output value if the input is an impulse function with amplitude equals to 3, at t=7 5. When the output will be 3.5 if the input is a unit steparrow_forward
- give me solution math not explinarrow_forwardExample (6): An evaporator is concentrating F kg/h at 311K of a 20wt% solution of NaOH to 50wt %. The saturated steam used for heating is at 399.3K. The pressure in the vapor space of the evaporator is 13.3 KPa abs. The 5:48 O Transcribed Image Text: Example (7): Determine thearrow_forward14.9. A forward feed double-effect vertical evaporator, with equal heating areas in each effect, is fed with 5 kg/s of a liquor of specific heat capacity of 4.18 kJ/kg K. and with no boiling point rise, so that 50 per cent of the feed liquor is evaporated. The overall heat transfer coefficient in the second effect is 75 per cent of that in the first effect. Steam is fed at 395 K and the boiling point in the second effect is 373 K. The feed is heated by an external heater to the boiling point in the first effect. It is decided to bleed off 0.25 kg/s of vapour from the vapour line to the second effect for use in another process. If the feed is still heated to the boiling point of the first effect by external means, what will be the change in steam consumption of the evaporator unit? For the purpose of calculation, the latent heat of the vapours and of the steam may both be taken as 2230 kJ/kgarrow_forward
- Example(3): It is desired to design a double effect evaporator for concentrating a certain caustic soda solution from 12.5wt% to 40wt%. The feed at 50°C enters the first evaporator at a rate of 2500kg/h. Steam at atmospheric pressure is being used for the said purpose. The second effect is operated under 600mmHg vacuum. If the overall heat transfer coefficients of the two stages are 1952 and 1220kcal/ m2.h.°C. respectively, determine the heat transfer area of each effect. The BPR will be considered and present for the both effect 5:49arrow_forwardالعنوان ose only Q Example (7): Determine the heating surface area 개 required for the production of 2.5kg/s of 50wt% NaOH solution from 15 wt% NaOH feed solution which entering at 100 oC to a single effect evaporator. The steam is available as saturated at 451.5K and the boiling point rise (boiling point evaluation) of 50wt% solution is 35K. the overall heat transfer coefficient is 2000 w/m²K. The pressure in the vapor space of the evaporator at atmospheric pressure. The solution has a specific heat of 4.18kJ/ kg.K. The enthalpy of vaporization under these condition is 2257kJ/kg Example (6): 5:48 An evaporator is concentrating F kg/h at 311K of a 20wt% solution of NaOH to 50wt %. The saturated steam used for heating is at 399.3K. The pressure in the vapor space of the evaporator is 13.3 KPa abs. The 5:48 1 J ۲/۱ ostrarrow_forwardExample 8: 900 Kg dry solid per hour is dried in a counter current continues dryer from 0.4 to 0.04 Kg H20/Kg wet solid moisture content. The wet solid enters the dryer at 25 °C and leaves at 55 °C. Fresh air at 25 °C and 0.01Kg vapor/Kg dry air is mixed with a part of the moist air leaving the dryer and heated to a temperature of 130 °C in a finned air heater and enters the dryer with 0.025 Kg/Kg alry air. Air leaving the dryer at 85 °C and have a humidity 0.055 Kg vaper/Kg dry air. At equilibrium the wet solid weight is 908 Kg solid per hour. *=0.0088 Calculate:- Heat loss from the dryer and the rate of fresh air. Take the specific heat of the solid and moisture are 980 and 4.18J/Kg.K respectively, A. =2500 KJ/Kg. Humid heat at 0.01 Kg vap/Kg dry=1.0238 KJ/Kg. "C. Humid heat at 0.055 Kg/Kg 1.1084 KJ/Kg. "C 5:42 Oarrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The