Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 67P
To determine
The maximum height attained by the bob.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A bullet with a mass m = 8.10 g and aninitial speed vi = 320 m>s is fired into a ballistic pendulum. Whatmass must the bob have if the bullet–bob combination is to rise toa maximum height of 0.125 m after the collision?
A bullet of mass m=0.5 g is fired horizontally with a speed v = 10 m/s into the bob of a ballistic pendulum of mass mP = 5 kg. Find the maximum height ℎ attained by the bob if the bullet passes through the bob and emerges with speed v/4Please explain each step.
A bullet of mass m=.500 grams is fired horizontally with a speed v=10 m/s into the bob of a ballistic pendulum of mass mp=.500 kg. Find the maximum height h attained by the bob if the bullet passes through the bob and emerges with speed v/4. [Answer should be in meters]
Chapter 8 Solutions
Physics for Scientists and Engineers
Ch. 8 - Prob. 1PCh. 8 - Prob. 2PCh. 8 - Prob. 3PCh. 8 - Prob. 4PCh. 8 - Prob. 5PCh. 8 - Prob. 6PCh. 8 - Prob. 7PCh. 8 - Prob. 8PCh. 8 - Prob. 9PCh. 8 - Prob. 10P
Ch. 8 - Prob. 11PCh. 8 - Prob. 12PCh. 8 - Prob. 13PCh. 8 - Prob. 14PCh. 8 - Prob. 15PCh. 8 - Prob. 16PCh. 8 - Prob. 17PCh. 8 - Prob. 18PCh. 8 - Prob. 19PCh. 8 - Prob. 20PCh. 8 - Prob. 21PCh. 8 - Prob. 22PCh. 8 - Prob. 23PCh. 8 - Prob. 24PCh. 8 - Prob. 25PCh. 8 - Prob. 26PCh. 8 - Prob. 27PCh. 8 - Prob. 28PCh. 8 - Prob. 29PCh. 8 - Prob. 30PCh. 8 - Prob. 31PCh. 8 - Prob. 32PCh. 8 - Prob. 33PCh. 8 - Prob. 34PCh. 8 - Prob. 35PCh. 8 - Prob. 36PCh. 8 - Prob. 37PCh. 8 - Prob. 38PCh. 8 - Prob. 39PCh. 8 - Prob. 40PCh. 8 - Prob. 41PCh. 8 - Prob. 42PCh. 8 - Prob. 43PCh. 8 - Prob. 44PCh. 8 - Prob. 45PCh. 8 - Prob. 46PCh. 8 - Prob. 47PCh. 8 - Prob. 48PCh. 8 - Prob. 49PCh. 8 - Prob. 50PCh. 8 - Prob. 51PCh. 8 - Prob. 52PCh. 8 - Prob. 53PCh. 8 - Prob. 54PCh. 8 - Prob. 55PCh. 8 - Prob. 56PCh. 8 - Prob. 57PCh. 8 - Prob. 58PCh. 8 - Prob. 59PCh. 8 - Prob. 60PCh. 8 - Prob. 61PCh. 8 - Prob. 62PCh. 8 - Prob. 63PCh. 8 - Prob. 64PCh. 8 - Prob. 65PCh. 8 - Prob. 66PCh. 8 - Prob. 67PCh. 8 - Prob. 68PCh. 8 - Prob. 69PCh. 8 - Prob. 70PCh. 8 - Prob. 71PCh. 8 - Prob. 72PCh. 8 - Prob. 73PCh. 8 - Prob. 74PCh. 8 - Prob. 75PCh. 8 - Prob. 76PCh. 8 - Prob. 77PCh. 8 - Prob. 78PCh. 8 - Prob. 79PCh. 8 - Prob. 80PCh. 8 - Prob. 81PCh. 8 - Prob. 82PCh. 8 - Prob. 83PCh. 8 - Prob. 84PCh. 8 - Prob. 85PCh. 8 - Prob. 86PCh. 8 - Prob. 87PCh. 8 - Prob. 88PCh. 8 - Prob. 89PCh. 8 - Prob. 90PCh. 8 - Prob. 91PCh. 8 - Prob. 92PCh. 8 - Prob. 93PCh. 8 - Prob. 94PCh. 8 - Prob. 95PCh. 8 - Prob. 96PCh. 8 - Prob. 98PCh. 8 - Prob. 99PCh. 8 - Prob. 100PCh. 8 - Prob. 101PCh. 8 - Prob. 102PCh. 8 - Prob. 103PCh. 8 - Prob. 104PCh. 8 - Prob. 105PCh. 8 - Prob. 106PCh. 8 - Prob. 107PCh. 8 - Prob. 108PCh. 8 - Prob. 109PCh. 8 - Prob. 110PCh. 8 - Prob. 111PCh. 8 - Prob. 112PCh. 8 - Prob. 113PCh. 8 - Prob. 114PCh. 8 - Prob. 115PCh. 8 - Prob. 116PCh. 8 - Prob. 117P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A particle of mass m moving along the x-axis with a velocity component +u collides head-on and sticks to a particle of mass m/3 moving along the x-axis with the velocity component −u. What is the mass M of the resulting particle?arrow_forwardNeed help with this question!arrow_forwardA bullet with a mass of 7 g and horizontal velocity of 130 m/s sticks into a massive block with a mass of 1.3 kg attached to a string with a length of 5 m. After an inelastic collision this ballistic pendulum swings up to a maximum angle. Calculate the value of this angle.arrow_forward
- A bullet of mass m = 7.50 g is fired horizontally with a speed v = 549 m/s into a bob of a ballistic pendulum of mass M = 1.20 kg. Find the maximum height h attained by the bob if the bullet passes through the bob and emerges with speed v/2.arrow_forwardA bullet of mass m = 0. 500 [g] is fired horizontally with a speed v = 10.0 [m/s] into the bob of a ballistic pendulum of mass mp = 0.500 [g]. Find the maximum height h attained by the bob if the bullet passes through the bob and emerges with speed v/4.arrow_forwardA 1.0 kg mass with a speed of 4.5 m/s strikes a 2.0 kg mass at rest. For a completely inelastic collision, find: (a) The speed of the masses after the collision. (b) The change in kinetic energy. (c) The momentum after the collision.arrow_forward
- Please asaparrow_forwardA particle with mass mA is struck head-on by another particle with mass mB that isinitially moving at speed v0 . The collision is elastic.(a) What percentage of the original energy does each particle have after the collision?(b) For what values, if any, of the mass ratio mA /mB is the original kinetic energy sharedequally by the two particles after the collision?arrow_forwardA 250 grams ball is fired from a spring gun into a 12 kg block of a ballistic pendulum. The block is displaced so that its center of gravity is raised6.0 cm. (a) Find the speed of the ball as it left the gun> (b) Find the loss in kinetic energy during the collision.arrow_forward
- For problem 29 calculate the speed in centimeters per second if the astronaut has the laser on for 18 days (5 sig figs)arrow_forwardTwo objects of equal mass are moving with equal speeds. They collide and move off together (perfectly inelastic collision) at half the value of their original speed. (a) What is the angle between their initial velocities? {answer should be 120o} (b) What percentage of the kinetic energy remains after the collision?arrow_forwardThe velocity of the 7m mass particle is Vî, and the m mass particle is at rest. After the collision, the angle between the velocity vector of the particle of mass m and the x-axis(î) is 30°. Find the angle between the velocity vector of the 7m mass particle after the collision and the x-axis(î). Hint is given in the figurearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY