College Physics
College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
bartleby

Videos

Question
Book Icon
Chapter 8, Problem 50TP
To determine

(a)

The final velocity of mass B after the collision.

Expert Solution
Check Mark

Answer to Problem 50TP

The final velocity of mass B after collision is 5 m/s.

Explanation of Solution

Given:

The mass A is moving in +x direction with an initial velocity, v1=15 m/s.

The mass of B is, m2=2m1.

The mass B is moving in x direction with an initial velocity, v2=10 m/s.

The mass A is moving in x direction after collision with a final velocity, v1=15 m/s.

Formula used:

Write the expression for conservation of momentum.

  m1v1+m2v2=m1v1+m2v2

Here, m1 is the mass of A, m2 is the mass of B, v1 is the initial velocity of mass A, v2 is the initial velocity of mass B, v1 is the final velocity of the mass A and v2 the final velocity of mass B.

Calculation:

The final velocity of mass B is calculated as

  m1v1+m2v2=m1v1+m2v2m1(15m/s)+2m1(10m/s)=m1(15m/s)+2m1v22m1v2=10m1v2=5m/s

Conclusion:

The velocity of mass B after collision is 5 m/s.

To determine

(b)

The change in kinetic energy after the collision.

Expert Solution
Check Mark

Answer to Problem 50TP

The change in kinetic energy after collision is 375 J.

Explanation of Solution

Given:

The mass of A is, m1=5 kg.

Formula used:

The initial kinetic energy KEi of the system is given by

  KEi=12(m1v12+m2v22)

The final kinetic energy KEf of the system is given by

  KEf=12[m1( v 1)2+m2( v 2)2]

The formula for change in kinetic energy ΔKE is given by

  ΔKE=KEfKEi

Calculation:

The mass of B is calculated as

  m2=2m1=2(5 kg)=10 kg

The initial kinetic energy KEi of the system is calculated as

  KEi=12[(5 kg)( 15 m/s )2+(10 kg)( 10 m/s )2]=1062.5J

The final kinetic energy KEf of the system is calculated as,

  KEf=12[(5 kg)( 15 m/s )2+(10 kg)( 5 m/s )2]=687.5J

The change in kinetic energy is calculated as

  ΔKE=687.5J1062.5J=375J

Conclusion:

The change in kinetic energy after collision is 375J.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A mass mA = 50 kg moving with a velocity vA = (5.0i + 2.0j – 4.0k) m/s, collides with mass mB = 5.0 kg which is initially at rest. Immediately after the collision, mass mA is observed traveling at velocity (-3.0i - 2.0k) m/s. Calculate the magnitudes of vA and vA’. the velocity of B after impact (vB’}.
(a) If the system's kinetic energy, as measured from the Earth reference frame, decreases by 20% because of the collision, what are the final velocities of the balls? (b) What change in internal energy has occurred? (c) An observer watches this collision from a reference frame moving at a velocity of 15 m/ s to the east relative to the Earth reference frame. What changes in kinetic energy does this observer measure?
Can you help me with this physics problem? A 0.35 kg projectile is moving in the negative y direction at a speed of 55 m/s. It collides and embeds in a 7.2 kg mass moving in the positive x direction with a speed of 5.1 m/s. What is the final velocity of the two masses? What fraction of energy was lost in this collision using Kinetic energy with this formula (Ki-Kf)/Ki

Chapter 8 Solutions

College Physics

Ch. 8 - Momentum for a system can be conserved in one...Ch. 8 - Professional Application Explain in terms of...Ch. 8 - Can objects in a system have momentum while the...Ch. 8 - Must the total energy of a system be conserved...Ch. 8 - What is an elastic collision?Ch. 8 - What is an inelastic collision? What is a...Ch. 8 - Mixed-pair ice skaters performing in a show are...Ch. 8 - A Small pickup truck that has a caliper shell...Ch. 8 - Prob. 19CQCh. 8 - Professional Application Suppose a fireworks shell...Ch. 8 - Professional Application During a visit to the...Ch. 8 - Professional Application It is possible for the...Ch. 8 - (a) Calculate the momentum of a 2000-kg elephant...Ch. 8 - (a) What is the mass of a large ship that has a...Ch. 8 - (a) At what speed would a 2.00104 -kg airplane...Ch. 8 - (a) What is the momentum of a garbage truck that...Ch. 8 - A runaway train car that has a mass of 15,000 kg...Ch. 8 - The mass of Earth is 5.9721024 kg and its orbital...Ch. 8 - A bullet is accelerated down the barrel of a gun...Ch. 8 - Professional Application A car moving at 10 m/s...Ch. 8 - A person slaps her leg with her hand, bringing her...Ch. 8 - Professional Application A professional boxer hits...Ch. 8 - Professional Application Suppose a child drives a...Ch. 8 - Professional Application One hazard of space...Ch. 8 - Professional Application A 75.0-kg person is...Ch. 8 - Professional Application Military rifles have a...Ch. 8 - A cruise ship with a mass of 1.00107 kg strikes a...Ch. 8 - Calculate the final speed of a 110-kg rugby player...Ch. 8 - Water from a fire hose is directed horizontally...Ch. 8 - A 0.450-kg hammer is moving horizontally at 7.00...Ch. 8 - Starting with the definitions of momentum and...Ch. 8 - A ball with an initial velocity of 10 m/s moves at...Ch. 8 - When serving a tennis ball, a player hits the ball...Ch. 8 - A punter drops a ball from rest vertically 1 meter...Ch. 8 - Professional Application Train cars are coupled...Ch. 8 - Suppose a clay model of a koala bear has a mass of...Ch. 8 - Professional Application Consider the following...Ch. 8 - What is the velocity of a 900-kg car initially...Ch. 8 - A 1.80-kg falcon catches a 0.650-kg dove from...Ch. 8 - Two identical objects (such as billiard balls)...Ch. 8 - Professional Application Two manned satellites...Ch. 8 - A 70.0-kg ice hockey goalie, originally at rest,...Ch. 8 - A 0.240-kg billiard ball that is moving at 3.00...Ch. 8 - During an ice show, a 60.0-kg skater leaps into...Ch. 8 - Professional Application Using mass and speed data...Ch. 8 - A battleship that is 6.00*10' kg and is originally...Ch. 8 - Professional Application Two manned satellites...Ch. 8 - Professional Application A 30,000-kg freight car...Ch. 8 - Professional Application Space probes may be...Ch. 8 - A 0.0250-kg bullet is accelerated from rest to a...Ch. 8 - Professional Application One of the waste products...Ch. 8 - Professional Application The Moon's craters are...Ch. 8 - Professional Application Two football players...Ch. 8 - What is the speed of a garbage truck that is...Ch. 8 - During a circus act, an elderly performer thrills...Ch. 8 - (a) During an ice skating performance, an...Ch. 8 - Two identical pucks collide on an air hockey...Ch. 8 - Confirm that the results of the example Example...Ch. 8 - A 3000-kg cannon is mounted so that it can recoil...Ch. 8 - Professional Application A 5.50-kg bowling ball...Ch. 8 - Professional Application Ernest Rutherford (the...Ch. 8 - Professional Application Two cars collide at an...Ch. 8 - Starting with equations m1v1=m1v1cos1+m2v2cos2 and...Ch. 8 - Integrated Concepts A 90.0-kg ice hockey player...Ch. 8 - Professional Application Antiballistic missiles...Ch. 8 - Professional Application What is the acceleration...Ch. 8 - Professional Application Calculate the increase in...Ch. 8 - Professional Application Ion-propulsion rockets...Ch. 8 - Derive the equation for the vertical acceleration...Ch. 8 - Professional Application (a) Calculate the maximum...Ch. 8 - Given the following data for a fire...Ch. 8 - How much of a single-stage rocket that is 100,000...Ch. 8 - Professional Application (a) A 5.00-kg squid...Ch. 8 - Unreasonable Results Squids have been reported to...Ch. 8 - Construct Your Own Problem Consider an astronaut...Ch. 8 - Construct Your Own Problem Consider an artillery...Ch. 8 - Prob. 1TPCh. 8 - Prob. 2TPCh. 8 - Prob. 3TPCh. 8 - Prob. 4TPCh. 8 - Prob. 5TPCh. 8 - Prob. 6TPCh. 8 - Prob. 7TPCh. 8 - Prob. 8TPCh. 8 - Prob. 9TPCh. 8 - Prob. 10TPCh. 8 - Prob. 11TPCh. 8 - Prob. 12TPCh. 8 - Prob. 13TPCh. 8 - Prob. 14TPCh. 8 - Prob. 15TPCh. 8 - Prob. 16TPCh. 8 - Prob. 17TPCh. 8 - Prob. 18TPCh. 8 - Prob. 19TPCh. 8 - Prob. 20TPCh. 8 - Prob. 21TPCh. 8 - Prob. 22TPCh. 8 - Prob. 23TPCh. 8 - Prob. 24TPCh. 8 - Prob. 25TPCh. 8 - Prob. 26TPCh. 8 - Prob. 27TPCh. 8 - Prob. 28TPCh. 8 - Prob. 29TPCh. 8 - Prob. 30TPCh. 8 - Prob. 31TPCh. 8 - Prob. 32TPCh. 8 - Prob. 33TPCh. 8 - Prob. 34TPCh. 8 - Prob. 35TPCh. 8 - Prob. 36TPCh. 8 - Prob. 37TPCh. 8 - Prob. 38TPCh. 8 - Prob. 39TPCh. 8 - Prob. 40TPCh. 8 - Prob. 41TPCh. 8 - Prob. 42TPCh. 8 - Prob. 43TPCh. 8 - Prob. 44TPCh. 8 - Prob. 45TPCh. 8 - Prob. 46TPCh. 8 - Prob. 47TPCh. 8 - Prob. 48TPCh. 8 - Prob. 49TPCh. 8 - Prob. 50TPCh. 8 - Prob. 51TPCh. 8 - Prob. 52TP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY