Problems
For Problem 18-29, find the Jordan canonical form
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Differential Equations and Linear Algebra (4th Edition)
- Show that no 22 matrices A and B exist that satisfy the matrix equation. AB-BA=1001.arrow_forwardConsider the matrices R=[ 0110 ] H=[ 1001 ] V=[ 1001 ] D=[ 0110 ] T=[ 0110 ] in GL(2,), and let G={ I2,R,R2,R3,H,D,V,T }. Given that G is a group of order 8 with respect to multiplication, write out a multiplication table for G. Sec. 3.3,22b,32b Find the center Z(G) for each of the following groups G. b. G={ I2,R,R2,R3,H,D,V,T } in Exercise 36 of section 3.1. Find the centralizer for each element a in each of the following groups. b. G={ I2,R,R2,R3,H,D,V,T } in Exercise 36 of section 3.1 Sec. 4.1,22 22. Find an isomorphism from the octic group D4 in Example 12 of this section to the group G={ I2,R,R2,R3,H,D,V,T } in Exercise 36 of Section 3.1. Sec. 4.6,14 14. Let G={ I2,R,R2,R3,H,D,V,T } be the multiplicative group of matrices in Exercise 36 of section 3.1, let G={ 1,1 } under multiplication, and define :GG by ([ abcd ])=adbc. Assume that is an epimorphism, and find the elements of K= ker . Write out the distinct elements of G/K. Let :G/KG be the isomorphism described in the proof of Theorem 4.27, and write out the values of .arrow_forwardIn a previous section, we showed that matrix multiplication is not commutative, that is, ABBA in most cases. Can you explain why matrix multiplication is commutative for matrix inverses, that is, A1A=AA1 ?arrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning