Differential Equations and Linear Algebra (4th Edition)
Differential Equations and Linear Algebra (4th Edition)
4th Edition
ISBN: 9780321964670
Author: Stephen W. Goode, Scott A. Annin
Publisher: PEARSON
bartleby

Videos

Textbook Question
Book Icon
Chapter 7.6, Problem 1TFR

True-False Review

For Questions (a)-(l), decide if the given statement is true or false, and give a brief justification for your answer. If true, you can quote a relevant definition or theorem in fact from the text. If false, provide an example, illustration, or brief explanation of why the statement is false.

(a) Every eigenvector is a generalized eigenvector.

(b) The number of Jordan blocks in the Jordan canonical form of a matrix A is the number of linearly independent eigenvectors of A .

(c) For every square matrix A , there is a unique invertible matrix S such that S 1 A S is in canonical form.

(d) If J 1 and J 2 are n × n matrices in Jordan canonical form, then the matrix J 1 + J 2 is in Jordan canonical form.

(e) A generalized eigenvector of A corresponding to an eigenvalue λ is a member of the null space ( A λ I ) p for some positive integer p .

(f) The dimension of K λ , the vector space of generalized eigenvectors corresponding to the number of Jordan blocks corresponding to λ in the Jordan canonical form of A .

(g) Every square matrix A is similar to a matrix J in Jordan canonical form.

(h) If J 1 and J 2 are n × n matrices in Jordan canonical form, then the matrix J 1 J 2 is in Jordan canonical form.

(i) The size of a Jordan block is equal to the number of vectors in the corresponding cycle of generalized eigenvectors of A .

(j) If A is an n × n matrix with no cycles of generalized eigenvectors of length p 2 , then A is diagonalizable.

(k) Similar matrices must have the same Jordan canonical form, up to rearrangement of the Jordan blocks.

(l) If J is in Jordan canonical form and r is a scalar, then the matrix r J is in Jordan canonical form.

Blurred answer

Chapter 7 Solutions

Differential Equations and Linear Algebra (4th Edition)

Ch. 7.1 - Prob. 12PCh. 7.1 - Prob. 13PCh. 7.1 - Prob. 14PCh. 7.1 - Prob. 15PCh. 7.1 - Prob. 16PCh. 7.1 - Prob. 17PCh. 7.1 - Prob. 18PCh. 7.1 - Prob. 19PCh. 7.1 - Prob. 20PCh. 7.1 - Prob. 21PCh. 7.1 - Prob. 22PCh. 7.1 - Prob. 23PCh. 7.1 - Prob. 24PCh. 7.1 - Prob. 25PCh. 7.1 - Prob. 26PCh. 7.1 - Prob. 27PCh. 7.1 - Prob. 28PCh. 7.1 - Prob. 29PCh. 7.1 - Prob. 30PCh. 7.1 - Prob. 31PCh. 7.1 - Prob. 32PCh. 7.1 - Find all eigenvalues and corresponding...Ch. 7.1 - If v1=(1,1), and v2=(2,1) are eigenvectors of the...Ch. 7.1 - Let v1=(1,1,1), v2=(2,1,3) and v3=(1,1,2) be...Ch. 7.1 - If v1,v2,v3 are linearly independent eigenvectors...Ch. 7.1 - Prove that the eigenvalues of an upper or lower...Ch. 7.1 - Prove Proposition 7.1.4.Ch. 7.1 - Let A be an nn invertible matrix. Prove that if ...Ch. 7.1 - Let A and B be nn matrix, and assume that v in n...Ch. 7.1 - Prob. 43PCh. 7.1 - Prob. 44PCh. 7.1 - Prob. 45PCh. 7.1 - Prob. 46PCh. 7.1 - Prob. 47PCh. 7.1 - Prob. 48PCh. 7.1 - Prob. 49PCh. 7.1 - Prob. 50PCh. 7.1 - Prob. 51PCh. 7.1 - Prob. 52PCh. 7.1 - Prob. 53PCh. 7.1 - Prob. 54PCh. 7.1 - Prob. 55PCh. 7.1 - Prob. 56PCh. 7.2 - Prob. 1PCh. 7.2 - Prob. 2PCh. 7.2 - Prob. 3PCh. 7.2 - Prob. 4PCh. 7.2 - Prob. 5PCh. 7.2 - Prob. 6PCh. 7.2 - Prob. 7PCh. 7.2 - Prob. 8PCh. 7.2 - Problems For Problems 1-16, determine the...Ch. 7.2 - Prob. 10PCh. 7.2 - Prob. 11PCh. 7.2 - Prob. 12PCh. 7.2 - Prob. 13PCh. 7.2 - Prob. 14PCh. 7.2 - Prob. 15PCh. 7.2 - Prob. 16PCh. 7.2 - Prob. 17PCh. 7.2 - Prob. 18PCh. 7.2 - For problems 17-22, determine whether the given...Ch. 7.2 - Problems For Problems 17-22, determine whether the...Ch. 7.2 - Prob. 21PCh. 7.2 - Problems For Problems 17-22, determine whether the...Ch. 7.2 - Prob. 23PCh. 7.2 - Prob. 24PCh. 7.2 - For problems 23-28, determine a basis for each...Ch. 7.2 - The matrix A=[223113124] has eigenvalues 1=1 and...Ch. 7.2 - Repeat the previous question for A=[111111111]...Ch. 7.2 - The matrix A=[abcabcabc] has eigenvalues 0,0, and...Ch. 7.2 - Consider the characteristic polynomial of an nn...Ch. 7.2 - Prob. 33PCh. 7.2 - Prob. 34PCh. 7.2 - Prob. 35PCh. 7.2 - In problems 33-36, use the result of Problem 32 to...Ch. 7.2 - Prob. 37PCh. 7.2 - Prob. 38PCh. 7.2 - Let Ei denotes the eigenspace of A corresponding...Ch. 7.3 - Prob. 1PCh. 7.3 - Prob. 2PCh. 7.3 - Prob. 3PCh. 7.3 - Prob. 4PCh. 7.3 - Prob. 5PCh. 7.3 - Prob. 6PCh. 7.3 - Prob. 7PCh. 7.3 - Prob. 8PCh. 7.3 - Prob. 9PCh. 7.3 - Prob. 10PCh. 7.3 - Prob. 11PCh. 7.3 - Prob. 12PCh. 7.3 - Prob. 13PCh. 7.3 - Prob. 14PCh. 7.3 - Prob. 15PCh. 7.3 - For Problems 1822, use the ideas introduced in...Ch. 7.3 - For Problems 1822, use the ideas introduced in...Ch. 7.3 - Prob. 20PCh. 7.3 - Prob. 21PCh. 7.3 - For Problems 1822, use the ideas introduced in...Ch. 7.3 - For Problems 2324, first write the given system of...Ch. 7.3 - Prob. 24PCh. 7.3 - Prob. 25PCh. 7.3 - Prob. 26PCh. 7.3 - Prob. 27PCh. 7.3 - We call a matrix B a square root of A if B2=A. a...Ch. 7.3 - Prob. 29PCh. 7.3 - Prob. 30PCh. 7.3 - Prob. 31PCh. 7.3 - Let A be a nondefective matrix and let S be a...Ch. 7.3 - Prob. 34PCh. 7.3 - Prob. 35PCh. 7.3 - Show that A=[2114] is defective and use the...Ch. 7.3 - Prob. 37PCh. 7.4 - Prob. 1PCh. 7.4 - Prob. 2PCh. 7.4 - Prob. 3PCh. 7.4 - Prob. 4PCh. 7.4 - Prob. 5PCh. 7.4 - Prob. 6PCh. 7.4 - Prob. 7PCh. 7.4 - Prob. 8PCh. 7.4 - Problems If A=[3005], determine eAt and eAt.Ch. 7.4 - Prob. 10PCh. 7.4 - Consider the matrix A=[ab0a]. We can write A=B+C,...Ch. 7.4 - Prob. 12PCh. 7.4 - Prob. 13PCh. 7.4 - Problems An nn matrix A that satisfies Ak=0 for...Ch. 7.4 - Prob. 15PCh. 7.4 - Prob. 16PCh. 7.4 - Prob. 17PCh. 7.4 - Problems Let A be the nn matrix whose only nonzero...Ch. 7.4 - Prob. 19PCh. 7.5 - True-False Review For Questions a-h, decide if the...Ch. 7.5 - True-False Review For Questions a-h, decide if the...Ch. 7.5 - True-False Review For Questions a-h, decide if the...Ch. 7.5 - True-False Review For Questions a-h, decide if the...Ch. 7.5 - True-False Review For Questions a-h, decide if the...Ch. 7.5 - True-False Review For Questions a-h, decide if the...Ch. 7.5 - True-False Review For Questions a-h, decide if the...Ch. 7.5 - True-False Review For Questions a-h, decide if the...Ch. 7.5 - Prob. 1PCh. 7.5 - Prob. 2PCh. 7.5 - Prob. 3PCh. 7.5 - Prob. 4PCh. 7.5 - Prob. 5PCh. 7.5 - Prob. 6PCh. 7.5 - Prob. 7PCh. 7.5 - Prob. 8PCh. 7.5 - Prob. 9PCh. 7.5 - Prob. 10PCh. 7.5 - Prob. 11PCh. 7.5 - Prob. 12PCh. 7.5 - Prob. 13PCh. 7.5 - Prob. 14PCh. 7.5 - Prob. 15PCh. 7.5 - Prob. 16PCh. 7.5 - Prob. 17PCh. 7.5 - Prob. 18PCh. 7.5 - Prob. 19PCh. 7.5 - Prob. 20PCh. 7.5 - The 22 real symmetric matrix A has two eigenvalues...Ch. 7.5 - Prob. 22PCh. 7.5 - Prob. 23PCh. 7.5 - Problems Problems 23-26 deal with the...Ch. 7.5 - Prob. 25PCh. 7.5 - Prob. 26PCh. 7.6 - True-False Review For Questions a-l, decide if the...Ch. 7.6 - True-False Review For Questions a-l, decide if the...Ch. 7.6 - Prob. 3TFRCh. 7.6 - True-False Review For Questions a-l, decide if the...Ch. 7.6 - Prob. 5TFRCh. 7.6 - True-False Review For Questions a-l, decide if the...Ch. 7.6 - Prob. 7TFRCh. 7.6 - True-False Review For Questions a-l, decide if the...Ch. 7.6 - Prob. 9TFRCh. 7.6 - Prob. 10TFRCh. 7.6 - True-False Review For Questions a-l, decide if the...Ch. 7.6 - Prob. 12TFRCh. 7.6 - Prob. 1PCh. 7.6 - Prob. 2PCh. 7.6 - Prob. 3PCh. 7.6 - Prob. 4PCh. 7.6 - Prob. 5PCh. 7.6 - Prob. 6PCh. 7.6 - Prob. 7PCh. 7.6 - Prob. 8PCh. 7.6 - Prob. 9PCh. 7.6 - Prob. 10PCh. 7.6 - Prob. 11PCh. 7.6 - Prob. 12PCh. 7.6 - Prob. 13PCh. 7.6 - Prob. 14PCh. 7.6 - Prob. 15PCh. 7.6 - Problems Give an example of a 22 matrix A that has...Ch. 7.6 - Problems Give an example of a 33 matrix A that has...Ch. 7.6 - Prob. 18PCh. 7.6 - Prob. 19PCh. 7.6 - Prob. 20PCh. 7.6 - Prob. 21PCh. 7.6 - Problems For Problem 18-29, find the Jordan...Ch. 7.6 - Problems For Problem 18-29, find the Jordan...Ch. 7.6 - Prob. 26PCh. 7.6 - Problems For Problem 18-29, find the Jordan...Ch. 7.6 - Prob. 30PCh. 7.6 - Problems For Problem 30-32, find the Jordan...Ch. 7.6 - Problems For Problem 30-32, find the Jordan...Ch. 7.6 - Prob. 33PCh. 7.6 - Problems For Problem 33-35, use the Jordan...Ch. 7.6 - Problems For Problem 33-35, use the Jordan...Ch. 7.6 - Prob. 36PCh. 7.6 - Prob. 37PCh. 7.6 - Prob. 38PCh. 7.6 - Prob. 39PCh. 7.6 - Prob. 40PCh. 7.6 - Prob. 41PCh. 7.6 - Prob. 42PCh. 7.6 - Prob. 43PCh. 7.6 - Prob. 44PCh. 7.6 - Prob. 45PCh. 7.7 - Prob. 1APCh. 7.7 - Prob. 2APCh. 7.7 - Additional Problems In Problems 16, decide whether...Ch. 7.7 - Additional Problems In Problems 16, decide whether...Ch. 7.7 - Additional Problems In Problems 16, decide whether...Ch. 7.7 - Additional Problems In Problems 16, decide whether...Ch. 7.7 - Additional Problems In Problems 710, use some form...Ch. 7.7 - Additional Problems In Problems 710, use some form...Ch. 7.7 - Additional Problems In Problems 710, use some form...Ch. 7.7 - Prob. 10APCh. 7.7 - Prob. 11APCh. 7.7 - Prob. 12APCh. 7.7 - Prob. 13APCh. 7.7 - In Problems 13-16, write down all of the possible...Ch. 7.7 - In Problems 13-16, write down all of the possible...Ch. 7.7 - In Problems 13-16, write down all of the possible...Ch. 7.7 - Prob. 17APCh. 7.7 - Prob. 18APCh. 7.7 - Assume that A1,A2,,Ak are nn matrices and, for...Ch. 7.7 - Prob. 20AP
Knowledge Booster
Background pattern image
Algebra
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Lecture 46: Eigenvalues & Eigenvectors; Author: IIT Kharagpur July 2018;https://www.youtube.com/watch?v=h5urBuE4Xhg;License: Standard YouTube License, CC-BY
What is an Eigenvector?; Author: LeiosOS;https://www.youtube.com/watch?v=ue3yoeZvt8E;License: Standard YouTube License, CC-BY