Concept explainers
(III) We usually neglect the mass of a spring if it is small compared to the truss attached to it. But in some applications, the mass of the spring must be taken into account. Consider a spring of unstretched length
where
FIGURE 7-30 Problem 68.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
EBK PHYSICS FOR SCIENTISTS & ENGINEERS
Additional Science Textbook Solutions
Campbell Essential Biology with Physiology (5th Edition)
Microbiology: An Introduction
Cosmic Perspective Fundamentals
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Applications and Investigations in Earth Science (9th Edition)
Campbell Biology (11th Edition)
- Check Your Understanding Identify one way you could decrease the maximum velocity of a simple harmonic oscillator.arrow_forwardA simple pendulum as shown in Fig. 4.24 oscillates back and forth. Use the letter designations in the figure to identify the pendulums position(s) for the following conditions. (There may be more than one answer. Consider the pendulum to be ideal with no energy losses.) (a) Position(s) of instantaneous rest ___ (b) Position(s) of maximum velocity ___ (c) Position(s) of maximum Ek ___ (d) Position(s) of maximum Ep ___ (e) Position(s) of minimum Ek ___ (f) Position(s) of minimum Ep ___ (g) Position(s) after which Ek increases ___ (h) Position(s) after which Ep increases ___ (i) Position(s) after which Ek decreases ___ (j) Position(s) after which Ep decreases ___ Figure 4.24 The Simple Pendulum and Energyarrow_forwardShow that the time rate of change of mechanical energy for a damped, undriven oscillator is given by dE/dt = bv2 and hence is always negative. To do so, differentiate the expression for the mechanical energy of an oscillator, E=12mv2+12kx2, and use Equation 12.28.arrow_forward
- Most harmonic oscillators are damped and, if undriven, eventually come to a stop. Why?arrow_forwardIf the speed of the observer is increased by 5.0%, what is the period of the pendulum when measured by this observer?arrow_forwardCheck Your Understanding An engineer builds two simple pendulums. Both are suspended from small wires secured to the ceiling of a room. Each pendulum hovers 2 cm above the floor. Pendulum 1 has a bob with a mass of 10 kg. Pendulum 2 has a bob with a mass of 100 kg. Describe how the motion of the pendulums will differ if the bobs are both displaced by 12°.arrow_forward
- The amplitude of a lightly damped oscillator decreases by 3.0% during each cycle. What percentage of the mechanical energy of the oscillator is lost in each cycle?arrow_forwardShow that, if a driven oscillator is only lightly damped and driven near resonance, the Q of the system is approximately Q2(TotalenergyEnergylossduringoneperiod)arrow_forwardUse the data in Table P16.59 for a block of mass m = 0.250 kg and assume friction is negligible. a. Write an expression for the force FH exerted by the spring on the block. b. Sketch FH versus t.arrow_forward
- A vibration sensor, used in testing a washing machine, consists of a cube of aluminum 1.50 cm on edge mounted on one end of a strip of spring steel (like a hacksaw blade) that lies in a vertical plane. The strips mass is small compared with that of the cube, but the strips length is large compared with the size of the cube. The other end of the strip is clamped to the frame of the washing machine that is not operating. A horizontal force of 1.43 N applied to the cube is required to hold it 2.75 cm away from its equilibrium position. If it is released, what is its frequency of vibration?arrow_forwardCheck Your Understanding How high above the bottom of its arc is the particle in the simple pendulum above, when its speed is 0.81 m/s?arrow_forwardIf the amplitude of a damped oscillator decreases to 1/e of its initial value after n periods, show that the frequency of the oscillator must be approximately [1 − (8π2n2)−1] times the frequency of the corresponding undamped oscillator.arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning