Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 7.10P
Consider atmospheric air at
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Water at 43.3°C flows over a large square plate at a velocity of 28 cm/s. The plate is 1.2 m long (in the flow direction) and its surface is maintained at a uniform temperature of 10.0°C. The width of the plate is 1.2 m. Calculate the steady rate of heat transfer for the entire width of the plate in watts (W). The properties of water at the film temperature of (Ts + T∞)/2 = (10 + 43.3)/2 = 27°C are ρ = 996.6 kg/m3, k = 0.610 W/m·°C, μ = 0.854 × 10–3 kg/m·s, and Pr = 5.85.
The steady rate of heat transfer per unit width of the plate is ___ W.
Consider atmospheric air at 25?C and a velocity of 25 m/s flowing over both surfaces of a 1-m-long flat plate that is maintained at 125?C. Determine the rate of heat transfer per unit width from the plate for values of the critical Reynolds number corresponding to 5×105
During air cooling of oranges, grapefruit, andtangelos, the heat transfer coefficient for combined convection,radiation, and evaporation for air velocities of0.11 < V < 0.33 m/s is determined experimentally and isexpressed as h = 5.05 kair Re1/3/D, where the diameter Dis the characteristic length. Oranges are cooled by refrigeratedair at 5°C and 1 atm at a velocity of 0.3 m/s. Determine(a) the initial rate of heat transfer from a 7-cm-diameterorange initially at 15°C with a thermal conductivity of0.50 W/m·K, (b) the value of the initial temperature gradientinside the orange at the surface, and (c) the value of theNusselt number.
Chapter 7 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 7 - Consider the following fluids at a film...Ch. 7 - Engine oil at 100C and a velocity of 0.1 m/s flows...Ch. 7 - Consider steady, parallel flow of atmospheric air...Ch. 7 - Consider a liquid metal (Pr1), with free stream...Ch. 7 - Consider the velocity boundary layer profile for...Ch. 7 - Consider a steady, turbulent boundary layer on and...Ch. 7 - Consider flow over a flat plate for which it is...Ch. 7 - A flat plate of width 1 m is maintained at a...Ch. 7 - An electric air heater consists of a horizontal...Ch. 7 - Consider atmospheric air at 25C and a velocity of...
Ch. 7 - Repeat Problem 7.11 for the case when the boundary...Ch. 7 - Consider water at 27°C in parallel flow over an...Ch. 7 - Explain under what conditions the total rate of...Ch. 7 - In fuel cell stacks, it is desirable to operate...Ch. 7 - The roof of a refrigerated truck compartment is of...Ch. 7 - The top surface of a heated compartment consists...Ch. 7 - Calculate the value of the average heat transfer...Ch. 7 - The proposed design for an anemometer to determine...Ch. 7 - Steel (AISI 1010) plates of thickness =6mm and...Ch. 7 - Consider a rectangular fin that is used to cool a...Ch. 7 - The Weather Channel reports that it is a hot,...Ch. 7 - In the production of sheet metals or plastics, it...Ch. 7 - An array of electronic chips is mounted within a...Ch. 7 - A steel strip emerges from the hot roll section of...Ch. 7 - In Problem 7.23. an anemometer design was...Ch. 7 - One hundred electrical components, each...Ch. 7 - The boundary layer associated with parallel flow...Ch. 7 - Forced air at 250C and 10 m/s is used to cool...Ch. 7 - Air at atmospheric pressure and a temperature of...Ch. 7 - Consider a thin, 50mm50mm fuel cell similar to...Ch. 7 - The cover plate of a flat-plate solar collector is...Ch. 7 - An array of 10 silicon chips, each of length...Ch. 7 - A square (10mm10mm) silicon chip is insulated on...Ch. 7 - A circular pipe of 25-mm outside diameter is...Ch. 7 - An L=1-m- long vertical copper tube of inner...Ch. 7 - A long, cylindrical, electrical heating element of...Ch. 7 - Consider the conditions of Problem 7.49, but now...Ch. 7 - Pin fins are to be specified for use in an...Ch. 7 - Prob. 7.52PCh. 7 - Prob. 7.53PCh. 7 - Hot water at 500C is routed from one building in...Ch. 7 - In a manufacturing process, long aluminum rods of...Ch. 7 - Prob. 7.58PCh. 7 - To determine air velocity changes, it is proposed...Ch. 7 - Determine the convection heat loss from both the...Ch. 7 - Prob. 7.63PCh. 7 - Prob. 7.64PCh. 7 - Prob. 7.67PCh. 7 - A thermocouple is inserted into a hot air duct to...Ch. 7 - Consider a sphere with a diameter of 20 mm and a...Ch. 7 - Prob. 7.76PCh. 7 - A spherical, underwater instrument pod used to...Ch. 7 - Worldwide. over a billion solder balls must be...Ch. 7 - Prob. 7.80PCh. 7 - Prob. 7.81PCh. 7 - Consider the plasma spray coating process of...Ch. 7 - Prob. 7.83PCh. 7 - Tissue engineering involves the development of...Ch. 7 - Consider temperature measurement in a gas stream...Ch. 7 - Prob. 7.89PCh. 7 - A preheater involves the use of condensing steam...Ch. 7 - Prob. 7.91PCh. 7 - A tube bank uses an aligned arrangement of...Ch. 7 - A tube bank uses an aligned arrangement of...Ch. 7 - Repeat Problem 7.94, but with NL=7,NT=10, and...Ch. 7 - Heating and cooling with miniature impinging jets...Ch. 7 - A circular transistor of 10-mm diameter is cooled...Ch. 7 - A long rectangular plate of AISI 304 stainless...Ch. 7 - A cryogenic probe is used to treat cancerous skin...Ch. 7 - Prob. 7.103PCh. 7 - Prob. 7.104PCh. 7 - Prob. 7.105PCh. 7 - Consider the packed bed of aluminum spheres...Ch. 7 - Prob. 7.108PCh. 7 - Prob. 7.109PCh. 7 - Prob. 7.111PCh. 7 - Packed beds of spherical panicles can be sintered...Ch. 7 - Prob. 7.114PCh. 7 - Prob. 7.116PCh. 7 - Prob. 7.117PCh. 7 - Prob. 7.118PCh. 7 - Prob. 7.119PCh. 7 - Prob. 7.120PCh. 7 - Dry air at 35°C and a velocity of 20 m/s flows...Ch. 7 - Prob. 7.123PCh. 7 - Benzene, a known carcinogen, has been spilled on...Ch. 7 - Prob. 7.125PCh. 7 - Prob. 7.126PCh. 7 - Condenser cooling water for a power plant is...Ch. 7 - Prob. 7.128PCh. 7 - In a paper-drying process, the paper moves on a...Ch. 7 - Prob. 7.131PCh. 7 - Prob. 7.132PCh. 7 - Prob. 7.133PCh. 7 - Prob. 7.134PCh. 7 - Prob. 7.136PCh. 7 - It has been suggested that heat transfer from a...Ch. 7 - Prob. 7.138PCh. 7 - Cylindrical dry-bulb and wet-bulb thermometers are...Ch. 7 - The thermal pollution problem is associated with...Ch. 7 - Cranberries are harvested by flooding the bogs in...Ch. 7 - A spherical drop of water, 0.5 mm in diameter, is...Ch. 7 - Prob. 7.143PCh. 7 - Prob. 7.144PCh. 7 - Prob. 7.145PCh. 7 - Prob. 7.146PCh. 7 - Prob. 7.147PCh. 7 - Consider an air-conditioning system composed of a...Ch. 7 - Prob. 7.149P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 5.7 The average Reynolds number for air passing in turbulent flow over a 2-m-long, flat plate is . Under these conditions, the average Nusselt number was found to be equal to 4150. Determine the average heat transfer coefficient for an oil having thermal properties similar to those in Appendix 2, Table 18, at at the same Reynolds number and flowing over the same plate.arrow_forwardFor flow over a flat plate, indicate the letter that describes the local variation of the heat transfer coefficient as a function of position on the plate. U∞ C (a) O (b) (c) ○ (d) L h 0 0 X ઉદ હ (c) L Xarrow_forwardHeat transferarrow_forward
- Water at 43.3°C flows over a large square plate at a velocity of 20 cm/s. The plate is 2 m long (in the flow direction) and its surface is maintained at a uniform temperature of 10.0°C. The width of the plate is 2 m. Calculate the steady rate of heat transfer for the entire width of the plate in watts (W). The properties of water at the film temperature of (Ts + T∞)/2 = (10 + 43.3)/2 = 27°C are p = 996.6 kg/m³, k= 0.610 W/m-°C, μ = 0.854 x 10-3 kg/m-s, and Pr = 5.85. The steady rate of heat transfer per unit width of the plate is W.arrow_forwardAir at a pressure of 1 atm. abs. and 50°C flows parallel to the top surface of a rectangular plate, 2 m x 9 m. Its temperature is maintained at 150°C. The air velocity is 8 m/s. If the critical Re no. is 106, determine the rate of heat transfer from the plate if the air flows parallel to (i) the 2 m long side (ii) the 9 m long sidearrow_forwardThe local atmospheric pressure in Denver, Colorado (elevation 1610 m), is 83.4 kPa. Air at this pressure and 20°C flows with a velocity of 8 m/s over a 1.5 m * 6 m flat plate whose temperature is 140°C. Determine the rate of heat transfer from the plate if the air flows parallel to the (a) 6-m-long side and (b) the 1.5 m side.arrow_forward
- Oil flow in journal bearing can be approximated as parallel flow between two large plates with one plate moving and the other stationary. Determine the velocity, temperature distributions, the maximum temperature, the rate of heat transfer and the mechanical power wasted in oil. Take properties of oil at 50°C are given to be, k=0.17W/m. K, and u=0.05N.s/m2.arrow_forward3. Consider two large isothermal plates separated by 2-mm thick oil film. The upper plate moves as a constant velocity of 12 m/s, while the lower plate is stationary. Both plates are maintained at 24 °C. a. Obtain relations for the velocity and temperature distribution in the oil b. Determine the maximum temperature in the oil and the heat flux from the oil to each plate. Properties: k= 0.145 W/mK µ= 0.8374 kg/ms =0,8374 Ns/m?arrow_forwardConsider a fluid with a Prandtl number of 7 flowing through a smooth circular tube. Using the Colburn, Petukhov, and Gnielinski equations, determine the Nusselt numbers for Reynolds numbers at 3500, 104, and 5 * 105. Compare and discuss the results.arrow_forward
- i need the answer quicklyarrow_forwardQ1: In a process water at 30°C flows over a plate maintained at 10 °C with a free stream velocity of 0.3 m/s. Determine the hydrodynamics boundary layer thickness, thermal boundary layer thickness, local and average values of heat transfer coefficient and refrigeration necessary to maintain the plate temperature. Consider a plate of 1m x 1m size. At the film temperature the property values are: Kinematic viscosity 1.006 x 106 m²/s, Thermal conductivity =0.5978 W/m.K, Prandtl number=7.02. =arrow_forwardWrite the definition ,formula and significance of Reynolds number and Grashoff number in convection heat transfer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license