Concept explainers
In an oscillating compressible flow field the volumetric strain rate is not zero, but varies with time following a fluid particle. In Cartesian coordinates we express this as
Suppose the characteristic speed and characteristic length for a given flow field arc V and L, respectively. Also suppose that/is a characteristic frequency of the oscillation (Fig. P7-31). Define the following dimensionless variables,
Noudimensionalize the equation and identify any established (named) dimensionless parameters that may appear.
Trending nowThis is a popular solution!
Chapter 7 Solutions
Fluid Mechanics Fundamentals And Applications
- Home Work (steady continuity equation at a point for incompressible fluid flow: 1- The x component of velocity in a steady, incompressible flow field in the xy plane is u= (A /x), where A-2m s, and x is measured in meters. Find the simplest y component of velocity for this flow field. 2- The velocity components for an incompressible steady flow field are u= (A x* +z) and v=B (xy + yz). Determine the z component of velocity for steady flow. 3- The x component of velocity for a flow field is given as u = Ax²y2 where A = 0.3 ms and x and y are in meters. Determine the y component of velocity for a steady incompressible flow. Assume incompressible steady two dimension flowarrow_forwardPLS SHOW ME FULL STEPS SIR PLS ANSWER WITHIN 30 MIN SIR SUBJECT (FLUID MECH 2)arrow_forwardAnswer with explanation pleasearrow_forward
- A velocity field (V) is specified as: V =5x²î +6zî + 4x²tk (units of velocity in [m/s]) Calculate z-component of the convective acceleration at (1,1,1) and t=1.arrow_forwardNeed help on both parts pleasearrow_forwardConverging duct flow is modeled by the steady, two- dimensional velocity field V = (u, v) = (U₁ + bx) i-by. For the case in which Ug = 3.56 ft/s and b = 7.66 s¯¹, plot several streamlines from x = 0 ft to 5 ft and y=-2 ft to 2 ft. Be sure to show the direction of the streamlines. (Please upload you response/solution using the controls provided below.)arrow_forward
- A Fluid Mechanics, Third Edition - Free PDF Reader E3 Thumbnails 138 FLUID KINEMATICS Fluid Mechanies Fundamenteis and Applicationu acceleration); this term can be nonzero even for steady flows. It accounts for the effect of the fluid particle moving (advecting or convecting) to a new location in the flow, where the velocity field is different. For example, nunan A Çengel | John M. Cinbala consider steady flow of water through a garden hose nozzle (Fig. 4-8). We define steady in the Eulerian frame of reference to be when properties at any point in the flow field do not change with respect to time. Since the velocity at the exit of the nozzle is larger than that at the nozzle entrance, fluid particles clearly accelerate, even though the flow is steady. The accel- eration is nonzero because of the advective acceleration terms in Eq. 4-9. FLUID MECHANICS FIGURE 4-8 Flow of water through the nozzle of a garden hose illustrates that fluid par- Note that while the flow is steady from the…arrow_forwarda. Derive an equation for the material acceleration vector.b. Obtain the vorticity vector for the velocity field.c. Is the flow rotational or irrotational? Show through your derivation.d. Is the flow incompressible or compressible? Show through your derivation.arrow_forwardneed urgent help, part d and e is requested. thanks the question is related to advanced fluid mechanicsarrow_forward
- A velocity field of the two-dimensional, time-dependent fluid flow is given by where t is time. Find the material derivative Du/Dt and hence calculate the acceleration of the fluid at any time t > 0 and any pont x > 0, y > 0. a) Incompressibility a) Is this flow incompressible (i.e. it has zero divergence)? Yes No ди Ət b) Time derivative of flow field Calculate the time derivative of the velocity. Represent your answer in the form i+ || 3 3 u(t, x, y) =r? (x² + y² ) i− {etxtyj X уј 3 a = c) Material derivative and acceleration Calculate the material derivative of the velocity and hence the acceleration a. Represent your answer in the form Du Dt || j i+ jarrow_forwardUse Eq. dx/u =dy/v=dz/w=dr/V to find and sketch the streamlines of the followingfl ow field:u = Kx; v = -Ky; w = 0, where K is a constant.arrow_forwardfluid mechanicsarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY