Bundle: Chemistry, Loose-Leaf Version, 10th + OWLv2, 4 terms (24 months) Printed Access Card
Bundle: Chemistry, Loose-Leaf Version, 10th + OWLv2, 4 terms (24 months) Printed Access Card
10th Edition
ISBN: 9781337537933
Author: Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 7, Problem 28Q

The following is an energy-level diagram for electronic transitions in the Bohr hydrogen atom.

Chapter 7, Problem 28Q, The following is an energy-level diagram for electronic transitions in the Bohr hydrogen atom. a.

a. Explain why the energy levels get closer together as they increase. Provide mathematical support for this.

b. Verify that the colors given in the diagram are correct. Provide mathematical support.

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The reason is to be given with mathematical support that energy levels get closer together as they increase. Also  the colours given in the diagram is to be checked.

Concept introduction:

The energy level diagram is simply a spectral line which gives the specific amount of energy for transition of energy levels.

To determine: The explanation with mathematical support that energy levels get closer together as they increase.

Answer to Problem 28Q

Answer

Energy levels get closer together because the negative value of energy will become less with the increase in the value of energy levels.

Explanation of Solution

The Danish physicist Niels Bohr proposed the Bohr Model of hydrogen atom in 1913. This model is also applicable for the atoms having one electron or atoms having hydrogen like characteristics.

The separation in lines in the energy level diagram signifies the separation of energy between the orbits. Hydrogen atom consists of only one electron. Hence, it is present at ground state. The difference in the energy state of orbits reduces for higher levels. This is the main reason that the separation between the lines decreases for higher levels.

The expression of energy of hydrogen given by Bohr is.

En=2.178×1018(Z2n2)J

Where,

  • En is energy of electron.
  • n is an integer orbit in which electrons resides.
  • Z is nuclear charge.

The integer value of orbit is inversely proportional to negative energy. As the value of integer is n2 this means that negative value of energy will become less with the increase in the value of n. Hence, the separation between the lines decreases for higher levels.

(b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The reason is to be given with mathematical support that energy levels get closer together as they increase. Also  the colours given in the diagram is to be checked.

Concept introduction:

The energy level diagram is simply a spectral line which gives the specific amount of energy for transition of energy levels.

To determine: The correctness of red color transition given in the diagram with mathematical support.

Answer to Problem 28Q

Answer

The red color transition is correct.

Explanation of Solution

The diagram below shows the transition state from high to low:

Consider the red color transition from state n=3 to n=2..

The expression of resultant energy is:

ΔE=EfEi (1)

Where,

  • ΔE is resultant energy.
  • Ef is energy in final state.
  • Ei is energy in initial state.

The expression of energy of hydrogen given by Bohr is,

En=2.178×1018(Z2n2)J (2)

The energy of red color transition from state n=3ton=2 using expression (1) and (2) is calculated,

ΔE=E2E1=[2.178×1018(1222)][2.178×1018(1232)]=3.03×1019J

The negative sign suggests that energy is lost during state transition which means that atom becomes more stable.

The expression of change in energy with respect to wavelength is,

ΔE=hcλλ=hcΔE

Where,

  • h is Planks constant.
  • c is the speed of light.
  • λ is the wavelength.
  • ΔE is change in energy.

The value of h is 6.626×1034Js.

The value of c is 3×108m/s.

Substitute the value of ΔE, h and c in above expression.

λ=6.626×1034Js×3×108m/s3.03×1019J=6.56×107m

It is clear from the above calculated value of wavelength that red light is in visible spectrum. Hence, color given in this transition is correct.

(c)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The reason is to be given with mathematical support that energy levels get closer together as they increase. Also  the colours given in the diagram is to be checked.

Concept introduction:

The energy level diagram is simply a spectral line which gives the specific amount of energy for transition of energy levels.

To determine: The correctness of green color transition given in the diagram with mathematical support.

Answer to Problem 28Q

Answer

The green color transition is correct.

Explanation of Solution

The diagram below shows the transition state from high to low:

Consider the green color transition from state n=4ton=2.

The expression of resultant energy is,

ΔE=EfEi (1)

The expression of energy of hydrogen given by Bohr is,

En=2.178×1018(Z2n2)J (2)

The energy of green color transition from state n=4ton=2 using expression (1) and (2) is calculated,

ΔE=E2E1=[2.178×1018(1222)][2.178×1018(1242)]=4.09×1019J

The negative sign suggests that energy is lost during state transition which means that atom becomes more stable.

The expression of change in energy with respect to wavelength:

ΔE=hcλλ=hcΔE

Substitute the value of ΔE, h and c in above expression.

λ=6.626×1034Js×3×108m/s4.09×1019J=4.86×107m

It is clear from the above calculated value of wavelength that green light is in visible spectrum. Hence, color given in this transition is correct.

(d)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The reason is to be given with mathematical support that energy levels get closer together as they increase. Also  the colours given in the diagram is to be checked.

Concept introduction:

The energy level diagram is simply a spectral line which gives the specific amount of energy for transition of energy levels.

To determine: The correctness of blue color transition given in the diagram with mathematical support.

Answer to Problem 28Q

Answer

The blue color transition is correct.

Explanation of Solution

The diagram below shows the transition state from high to low:

Consider the blue color transition from state n=5ton=2.

The expression of resultant energy is:

ΔE=EfEi (1)

The expression of energy of hydrogen given by Bohr is,

En=2.178×1018(Z2n2)J (2)

The energy of blue color transition from state n=5ton=2 using expression (1) and (2) is calculated,

ΔE=E2E1=[2.178×1018(1222)][2.178×1018(1252)]=4.58×1019J

The negative sign suggests that energy is lost during state transition which means that atom becomes more stable.

The expression of change in energy with respect to wavelength:

ΔE=hcλλ=hcΔE

Substitute the value of ΔE, h and c in above expression.

λ=6.626×1034Js×3×108m/s4.58×1019J=4.34×107m

It is clear from the above calculated value of wavelength that blue light is in visible spectrum. Hence, color given in this transition is correct.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 7 Solutions

Bundle: Chemistry, Loose-Leaf Version, 10th + OWLv2, 4 terms (24 months) Printed Access Card

Ch. 7 - Prob. 1ALQCh. 7 - Defend and criticize Bohrs model. Why was it...Ch. 7 - The first four ionization energies for the...Ch. 7 - Compare the first ionization energy of helium to...Ch. 7 - Which has the larger second ionization energy,...Ch. 7 - Explain why a graph of ionization energy versus...Ch. 7 - Without referring to your text, predict the trend...Ch. 7 - Account for the fact that the line that separates...Ch. 7 - Make sense of the fact that metals tend to lose...Ch. 7 - Explain electron from a quantum mechanical...Ch. 7 - Which is larger, the H 1s orbital or the Li 1s...Ch. 7 - There are an infinite number of allowed electronic...Ch. 7 - Prob. 13ALQCh. 7 - Choose the best response for the following. The...Ch. 7 - Consider the following statement "The ionization...Ch. 7 - Prob. 16ALQCh. 7 - How does probability fit into the description of...Ch. 7 - What is meant by an orbital?Ch. 7 - Explain the difference between the probability...Ch. 7 - Is the following statement true or false? The...Ch. 7 - Which is higher in energy, the 2s or 2p orbital,...Ch. 7 - Prove mathematically that it is more energetically...Ch. 7 - What type of relationship (direct or inverse) e...Ch. 7 - What do we mean by the frequency of...Ch. 7 - Explain the photoelectric effectCh. 7 - Describe briefly why the study of electromagnetic...Ch. 7 - How does the wavelength of a fast-pitched baseball...Ch. 7 - The following is an energy-level diagram for...Ch. 7 - The Bohr model works for only one electron...Ch. 7 - We can represent both probability and radial...Ch. 7 - Consider the representations of the p and d atomic...Ch. 7 - The periodic table consists of four blocks of...Ch. 7 - Many times the claim is made that subshells...Ch. 7 - Prob. 36QCh. 7 - Elements with very large ionization energies also...Ch. 7 - The changes in electron affinity as one goes down...Ch. 7 - Why is it much harder to explain the line spectra...Ch. 7 - Scientists use emission spectra to confirm the...Ch. 7 - Does the minimization of electron-electron...Ch. 7 - In the hydtogen atom, what is the physical...Ch. 7 - On which quantum numbers does the energy of an...Ch. 7 - Although Mendeleev predicted the existence of...Ch. 7 - Photosynthesis uses 660-nm light to convert CO2...Ch. 7 - An FM radio station broadcasts at 99.5 MHz....Ch. 7 - Microwave radiation has a wavelength on the order...Ch. 7 - A photon of ultraviolet (UV) light possesses...Ch. 7 - Octyl methoxycinoamate and oxybenzone are common...Ch. 7 - Human color vision is " produced" by the nervous...Ch. 7 - Consider the following waves representing...Ch. 7 - One type of electromagnetic radiation has a...Ch. 7 - Carbon absorbs energy at a wavelength of 150. nm....Ch. 7 - X rays have wavelengths on the order of 1 1010 m....Ch. 7 - The work function of an element is the energy...Ch. 7 - It takes 208.4 kJ of energy to remove 1 mole of...Ch. 7 - It takes 7.21 1019 J of energy to remove an...Ch. 7 - Ionization energy is the energy required to remove...Ch. 7 - Calculate the de Broglie wavelength for each of...Ch. 7 - Neutron diffraction is used in determining the...Ch. 7 - A particle has a velocity that is 90.% of the...Ch. 7 - Calculate the wavelength of light emiued when each...Ch. 7 - Calculate the wavelength of light emitted when...Ch. 7 - Using vertical lines, indicate the transitions...Ch. 7 - Using vertical lines, indicate the transitions...Ch. 7 - Consider only the transitions involving the first...Ch. 7 - Assume that a hydrogen atoms electron has been...Ch. 7 - Does a photon of visible light ( 400 to 700 nm)...Ch. 7 - An electron is excited from the n = 1 ground state...Ch. 7 - Calculate the maximum wavelength of light capable...Ch. 7 - Consider an electron for a hydrogen atom in an...Ch. 7 - An excited hydrogen atom with an electron in the n...Ch. 7 - An excited hydrogen atom emits light with a...Ch. 7 - Using the Heisenberg uncertainty principle,...Ch. 7 - The Heisenberg uncertainty principle can be...Ch. 7 - What are the possible values for the quantum...Ch. 7 - Identify each of the following orbitals and...Ch. 7 - Which of the following sets of quantum numbers are...Ch. 7 - Which of the following sets of quantum numbers are...Ch. 7 - What is the physical significance of the value of...Ch. 7 - In defining the sizes of orbitals, why must we use...Ch. 7 - Total radial probability distributions for the...Ch. 7 - Tbe relative orbital levels for the hydrogen atom...Ch. 7 - How many orbitals in an atom can have the...Ch. 7 - How many electrons in an atom can have the...Ch. 7 - Give the maximum number of electrons in an atom...Ch. 7 - Give the maximum number of electrons in an atom...Ch. 7 - Draw atomic orbital diagrams representing the...Ch. 7 - For elements l36, there are two exceptions to the...Ch. 7 - The elements Si, Ga, As, Ge, Al, Cd, S, and Se are...Ch. 7 - Write the expected electron configurations for...Ch. 7 - How many electrons would be predicted in the...Ch. 7 - For each of the following elements, which set of...Ch. 7 - Write the expected ground-state electron...Ch. 7 - Using only the periodic table inside the front...Ch. 7 - Given the valence electron orbital level diagram...Ch. 7 - Identify the following elements. a. An excited...Ch. 7 - In the ground state of mercury, Hg, a. how many...Ch. 7 - In the ground state of element 115, Uup, a. how...Ch. 7 - Give a possible set of values of the four quantum...Ch. 7 - Give a possible set of values of the four quantum...Ch. 7 - Valence electrons are those electrons in the...Ch. 7 - How many valence electrons do each of the...Ch. 7 - A certain oxygen atom has the electron...Ch. 7 - Which of the following electron configurations...Ch. 7 - Which of elements 1-36 have two unpaired electrons...Ch. 7 - The first-row transition metals from chromium...Ch. 7 - One bit of evidence that the quantum mechanical...Ch. 7 - Identify how many unpaired electrons are present...Ch. 7 - Prob. 111ECh. 7 - Arrange the following groups of atoms in order of...Ch. 7 - Prob. 113ECh. 7 - Arrange the atoms in Exercise 108 in order of...Ch. 7 - In each of the following sets, which atom or ion...Ch. 7 - In each of the following sets, which atom or ion...Ch. 7 - Element 106 has been named seaborgium, Sg, in...Ch. 7 - The first ionization energies of As and Se are...Ch. 7 - Rank the elements Be, B, C, N, and O in order of...Ch. 7 - Consider the following ionization energies for...Ch. 7 - The following graph plots the first, second, and...Ch. 7 - For each of the following pairs of elements (C and...Ch. 7 - For each of the following pairs of elements (Mg...Ch. 7 - The electron affinities of the elements from...Ch. 7 - In the second row of the periodic table, Be, N,...Ch. 7 - Prob. 127ECh. 7 - Order the atoms in each of the following sets from...Ch. 7 - The electron affinity for sulfur is more negative...Ch. 7 - Which has the more negative electron affinity, the...Ch. 7 - Write equations corresponding to the following: a....Ch. 7 - Using data from the text, determine the following...Ch. 7 - Prob. 133ECh. 7 - Prob. 135ECh. 7 - Cesium was discovered in natural mineral waters in...Ch. 7 - 'The bright yellow light emitted by a sodium vapor...Ch. 7 - Does the information on alkali metals in Table 2-8...Ch. 7 - Predict the atomic number of the next alkali metal...Ch. 7 - "Lithium" is often prescribed as a...Ch. 7 - Prob. 142ECh. 7 - Complete and balance the equations for the...Ch. 7 - Complete and balance the equations for the...Ch. 7 - An unknown element is a nonmetal and has a valence...Ch. 7 - A carbon-oxygen double bond in a certain organic...Ch. 7 - Photogray lenses incorporate small amounts of...Ch. 7 - Mars is roughly 60 million km from the earth. How...Ch. 7 - Consider the following approximate visible light...Ch. 7 - One of the visible lines in the hydrogen emission...Ch. 7 - Using Fig. 2-30, list the elements (ignore the...Ch. 7 - Are the following statements true for the hydrogen...Ch. 7 - Although no currently known elements contain...Ch. 7 - Which of the following orbital designations are...Ch. 7 - The four most abundant elements by mass in the...Ch. 7 - Consider the eight most abundant elements in the...Ch. 7 - An ion having a 4+ charge and a mass of 49.9 u has...Ch. 7 - The successive ionization energies for an unknown...Ch. 7 - In the ground state of cadmium, Cd, a. how many...Ch. 7 - Consider the following idealized PES spectrum for...Ch. 7 - It takes 476 kJ to remove 1 mole of electrons from...Ch. 7 - Calculate, to four significant figures, the...Ch. 7 - Assume that a hydrogen atoms electron bas been...Ch. 7 - Determine the maximum number of electrons that can...Ch. 7 - Consider the ground state of arsenic, As. How many...Ch. 7 - Which of the following statements is(are) true? a....Ch. 7 - Identify the following three elements. a. The...Ch. 7 - For each of the following pairs of elements,...Ch. 7 - Which of the following statements is(are) true? a....Ch. 7 - Three elements have the electron configurations...Ch. 7 - The figure below represents part of the emission...Ch. 7 - One of the emission spectral lines for Be3+ has a...Ch. 7 - The figure below represents part of the emission...Ch. 7 - When lhe excited electron in a hydrogen atom falls...Ch. 7 - Prob. 177CPCh. 7 - For hydrogen atoms, the wave function for the...Ch. 7 - The wave function for the 2pz, orbital in the...Ch. 7 - Answer the following questions, assuming that ms,...Ch. 7 - Assume that we are in another universe with...Ch. 7 - Without looking at data in the text, sketch a...Ch. 7 - The following numbers are the ratios of second...Ch. 7 - We expect the atomic radius to increase going down...Ch. 7 - The ionization energy for a 1s electron in a...Ch. 7 - An atom of a particular element is traveling at...Ch. 7 - As the weapons officer aboard the Srarship...Ch. 7 - Answer the following questions based on the given...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Text book image
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
Quantum Mechanics - Part 1: Crash Course Physics #43; Author: CrashCourse;https://www.youtube.com/watch?v=7kb1VT0J3DE;License: Standard YouTube License, CC-BY