College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 26PE
Using values from Table 7.1, how many DNA molecules could be broken by the energy carried by a single electron in the beam of an old-fashioned TV tube? (These electrons were not dangerous in themselves, but they did create dangerous x rays. Later model tube TVs had shielding that absorbed x rays before they escaped and exposed viewers.)
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Not from book (1): Magnetar. On December 27, 2004, astronomers observed the greatest flash of light ever recorded from outside the solar system. It came from the highly magnetic neutron star SGR 1806-20 (a magnetar). During 0.20 s, this star released as much energy as our sun does in 250,000 years. If P is the average power output of our sun, what was the average power output (in terms of P) of this magnetar?
Meteor Crater. About 50,000 years ago, a meteor crashed into the earth near present-day Flagstaff, Arizona. Measurements from 2005 estimate that this meteor had a mass of about kg (around 150,000 tons) and hit the ground at a speed of (a) How much kinetic energy did this meteor deliver to the ground? (b) How does this energy compare to the energy released by a 1.0-megaton nuclear bomb? (A megaton bomb releases the same amount of energy as a million tons of TNT, and 1.0 ton of TNT releases J of energy.
Solar energy reaching the earth is about 1350 W/m2 outside the earth’s atmosphere, and 950 W/m2 on earth’s surface normal to the sun on a clear day. Someone is marketing 2 m * 3 m photovoltaic cell panels with the claim that a single panel can meet the electricity needs of a house. How do you evaluate this claim? Photovoltaic cells have a conversion efficiency of about 15 percent.
Chapter 7 Solutions
College Physics
Ch. 7 - Give an example of something think of as work in...Ch. 7 - Give an example of a situation in which there is a...Ch. 7 - Describe a situation in which a force is exerted...Ch. 7 - The person in Figure 7.33 does work on the lawn...Ch. 7 - Work done on a system puts energy into it Work...Ch. 7 - When solving for speed in Example 7.4, we kept...Ch. 7 - In Example 7.7, we calculated the final speed of a...Ch. 7 - Does the work you do on a book when you lift it...Ch. 7 - What is a conservative force?Ch. 7 - The force exerted by a diving board is...
Ch. 7 - Define mechanical energy. What is the relationship...Ch. 7 - What is the relationship of potential energy to...Ch. 7 - Consider the following scenario. A car for which...Ch. 7 - Describe the energy transfers and transformations...Ch. 7 - Do devices with efficiencies of less than one...Ch. 7 - List four different forms or types of energy. Give...Ch. 7 - List the energy conversions that occur when riding...Ch. 7 - Most electrical appliances are rated in watts....Ch. 7 - Explain, in terms of the definition of power, why...Ch. 7 - A spark of static electricity, such as that you...Ch. 7 - Explain why it is easier to climb a mountain on a...Ch. 7 - Do you do work on the outside world when you rub...Ch. 7 - Shivering is an involuntary response to lowered...Ch. 7 - Discuss the relative effectiveness of dieting and...Ch. 7 - What is the difference between energy conservation...Ch. 7 - If the efficiency of a coal-fired electrical...Ch. 7 - How much work does a supermarket checkout...Ch. 7 - A 75.0-kg person climbs stairs, gaining 2.50...Ch. 7 - (a) Calculate the work done on a 1500-kg elevator...Ch. 7 - Suppose a car travels 108 km at a speed of 30.0...Ch. 7 - Calculate the work done by an 85.0-kg man who...Ch. 7 - How much work is done by the boy pulling his...Ch. 7 - A shopper pushes a grocery cart 20.0 m at constant...Ch. 7 - Suppose the ski patrol lowers a rescue sled and...Ch. 7 - Compare the kinetic energy of a 20,000-kg truck...Ch. 7 - (a) How fast must a 3000-kg elephant move to have...Ch. 7 - Confirm the value given for the kinetic energy of...Ch. 7 - (a) Calculate the force needed to bring a 950-kg...Ch. 7 - A car's bumper is designed to withstand a 4.0-km/h...Ch. 7 - Boxing gloves are padded to lessen the force of a...Ch. 7 - Using energy considerations, calculate the average...Ch. 7 - A hydroelectric power facility (see Figure 7.38)...Ch. 7 - (a) How much gravitational potential energy...Ch. 7 - Suppose a 350-g kookaburra (a large kingfisher...Ch. 7 - In Example 7.7, we found that the speed of a...Ch. 7 - A 100-g toy car is propelled by a compressed...Ch. 7 - In a downhill ski race, surprisingly, little...Ch. 7 - A 5.00105 -kg subway train is brought to a stop...Ch. 7 - A pogo stick has a spring with a force constant of...Ch. 7 - A 60.0-kg skier with an initial speed of 12.0 m/s...Ch. 7 - (a) How high a hill can a car coast up (engine...Ch. 7 - Using values from Table 7.1, how many DNA...Ch. 7 - Using energy considerations and assuming...Ch. 7 - If the energy in fusion bombs were used to supply...Ch. 7 - (a) Use of hydrogen fusion to supply energy is a...Ch. 7 - The Crab Nebula (see Figure 7.41) pulsar is the...Ch. 7 - Suppose a star 1000 times brighter than our Sun...Ch. 7 - A person in good physical condition can put out...Ch. 7 - What is the cost of operating a 3.00-W electric...Ch. 7 - A large household air conditioner may consume 15.0...Ch. 7 - (a) What is the average power consumption in watts...Ch. 7 - (a) What is the average useful power output of a...Ch. 7 - A 500-kg dragster accelerates from rest to a final...Ch. 7 - (a) How long will it take an 850-kg car with a...Ch. 7 - (a) Find the useful power output of an elevator...Ch. 7 - (a) What is the available energy content, in...Ch. 7 - (a) How long would it takea 1.50105 -kg airplane...Ch. 7 - Calculate the power output needed for a 950-kg car...Ch. 7 - (a) Calculate the power per square meter reaching...Ch. 7 - (a) How long can you rapidly climb stairs...Ch. 7 - (a) What is the power output in watts and...Ch. 7 - Calculate the power output in watts and horsepower...Ch. 7 - (a) What is the efficiency of an out-of-condition...Ch. 7 - Energy that is not utilized for work or heat...Ch. 7 - Using data from Table 7.5, calculate the daily...Ch. 7 - What is the efficiency of a subject on a treadmill...Ch. 7 - Shoveling snow can be extremely taxing because the...Ch. 7 - Very large forces are produced in joints when a...Ch. 7 - Jogging on hard surfaces with insufficiently...Ch. 7 - (a) Calculate the energy in kJ used by a 55.0-kg...Ch. 7 - Kanellos Kanellopoulos flew 119 km from Crete to...Ch. 7 - The swimmer shown in Figure 7.44 exerts an average...Ch. 7 - Mountain climbers carry bottled oxygen when at...Ch. 7 - The awe-inspiring Great Pyramid of Cheops was...Ch. 7 - (a) How long can you play tennis on the 800 kJ...Ch. 7 - Integrated Concepts (a) Calculate the force the...Ch. 7 - Integrated Concepts A 75.0-kg cross-country skier...Ch. 7 - Integrated Concepts The 70.0-kg swimmer in Figure...Ch. 7 - Integrated Concepts A toy gun uses a spring with a...Ch. 7 - Integrated Concepts (a) What force must be...Ch. 7 - Unreasonable Results A car advertisement claims...Ch. 7 - Unreasonable Results Body fat is metabolized,...Ch. 7 - Construct Your Own Problem Consider a person...Ch. 7 - Construct Your Own Problem Consider humans...Ch. 7 - Integrated Concepts A 105-kg basketball player...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What dipeptides would be formed by heating a mixture of valine and N-protected leucine?
Organic Chemistry (8th Edition)
Use a globe or map to determine, as accurately as possible, the latitude and longitude of Athens, Greece.
Applications and Investigations in Earth Science (9th Edition)
Some organizations are starting to envision a sustainable societyone in which each generation inherits sufficie...
Campbell Essential Biology (7th Edition)
What are four functions of connective tissue?
Anatomy & Physiology (6th Edition)
Although many chimpanzees live in environments with oil palm nuts, members of only a few populations use stones...
Campbell Biology (11th Edition)
Why is an endospore called a resting structure? Of what advantage is an endospore to a bacterial cell?
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A particle of mass 2.0 kg moves under the influence of the force F(x)=(3/x)N. If its speed at x=2.0 m is v=6.0 m/s, what is its speed at x = 7.0 m?arrow_forwardThis problem gives some idea of the magnitude of the energy yield of a small tactical bomb. Assume that half the energy of a 1.00kT nuclear depth charge set off under an aircraft carrier goes into lifting it out of the water—that is, into gravitational potential energy. How high is the carrier lifted if its mass is 90,000 tons?arrow_forwardWhat average power is generated by a 70.0-kg mountain climber who climbs a summit of height 325 m in 95.0 min? (a) 39.1 W (b) 54.6 W (c) 25.5 W (d) 67.0 W (e) 88.4 Warrow_forward
- I have 72 lightbulbs in my house. 53 of these lightbulbs are 65 watt and the other 19 lightbulbs are 53 watt. I use the 65 watt lightbulbs an average of 10 hours a day and 53 watt an average of 12 hours a day. 1 kilowatt=1000 watts. Estimate the energy used during 1 year by all the lightbulbs in my home?arrow_forwardIn a sunny location, sunlight has a power density of about 1 kW/m2 . Photovoltaic solar cells can convert this power into electricity with 16% efficiency. If a typical home uses 390 kW⋅h of electricity per month, how many square meters of solar cells would be required to meet its energy requirements? Assume that electricity can be generated from the sunlight for 8 h/day .arrow_forwardE9P9arrow_forward
- Flapping flight is very energy intensive. A wind tunnel test on an 89 gg starling showed that the bird used 12 WW of metabolic power to fly at 11 m/sm/s. A migrating starling flies steadily at 11 m/sm/s for 1.0hh, using energy from its fat stores. How many grams of fat does it burn? Consider that metabolizing 1 gg of fat releases approximately 37 kJkJ of energy.arrow_forwardJudy has started fast walking for half an hour each day in an effort to lose weight. Judy currently weighs 100 kg. She walks expending about 0.1 kcal per kg of body weight per minute. For a woman, we multiply the body weight in kg by 0.9 kcal/kg body weight/hour to calculate her BMR. What is Judy’s daily energy expenditure? (Ignore TEF due to its small portion)?arrow_forwardHydroelectricity is generated by storing water behind a dam, and then letting some of it run through generators in the dam to turn them. If the system is the water, what is the environment that is doing work on it? If a dam has water 100 m deep behind it, how much energy was generated if 10,000 kg of water exited the dam at 2.0 m/s?arrow_forward
- According to the World Energy Council, the average household in Mexico consumes about 1600 kWh of energy per year. In Monterrey, Nuevo León, Mexico, the GHI Solar Map suggests that the average annual solar energy potential is about 1800 kWh/m2 per year. If solar panels are available in sizes of 1 m × 1 m with an efficiency of 17%, how many panels will be needed to power a house in Monterrey for a year? Question 10 options: 6 7 2 1arrow_forwardJudy has started fast walking for half an hour each day in an effort to lose weight. Judy currently weighs 100kg. She walks expending about 0.1 kcal per kg of body weight per minute. For a woman, we multiply the body weight in kg by 0.9 kcal/kg body weight/hour to calculate her BMR. What is Judy’s daily energy expenditure? (Ignore TEF due to its small portion).arrow_forwardA family uses 8 kW of power, (a) Direct solar energy is incident on the horizontal surface at an average rate of 200 W per square meter. If 20% of this energy can be converted to useful electrical energy, how large an area is needed to supply 8 kW? (b) Compare this area to that of the roof of a typical house.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY