Fluid Mechanics: Fundamentals and Applications
Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 7, Problem 113P

Repeal Prob. 7-112, but with the distance r from the sound source as an additional independent parameter.

Expert Solution
Check Mark
To determine

(a)

A dimensionless relationship for I as a function of the other parameters by using the method of repeating variables in mass-based primary dimensions by using distance r from the sound source as an additional independent parameter.

Answer to Problem 113P

Dimensionless relationship between sound intensity and remaining parameter.

  Iρc3=f(Iρc2)

Explanation of Solution

Given Information:

  Sound pressure = pDensity =ρSound speed = cSound intencity = IDistance = r

Concept used:

The mass-based primary dimension will be used in this question. In this system all the possible variables are replaced by the mass. Mass, time length dimensions are represented as, [M],[L] and [t].

Concept of Buckingham's Pi method will also be used. It is represented as-

  k=nj

Where,

n= number of physical variables

k =independent physical quantities

n = total number of variable parameters

Calculation:

  I=F(p,c,ρ,r)

Primary dimensions of each parameter,

  velocity ofsound  = c={Lt}={L1t 1}Density =ρ={ mass volume}={m L 3 }={m1L 3} pressure = p={ force area }={ mL t 2 L 2 }={ m 1 L 1 t 2 } Distance = r={L} Sound intencity = I={ power area }={ m L 2 t 3 L 2 }={m t 3 }

The total mass of parameters, n = 5

No. Of primary dimensions, j = 3

Expected no of π term, k = n-j =2

Dependant π by combining repeating parameter with remaining parameters.

  (π)1=(Ira1ρb1cc1)

Rewriting,

  {M0L0T0}={(MT3)(L)a1(M1L3)b1(L1T1)c1}

Mass,

  {M0}={M1Mb1}0=1+b1b1=1

Time,

  {T0}={T3Tc1}0=3c1c1=3

Length,

  {10}={La1L3b1Tc1}0=a1+33a1=0

Putting value in π the term.

  π1=Ir0ρ1c3π1=Iρc3

Dependant Pi using independent variable P.

  π2=Pra2ρb2cc2

  {M0L0T0}={(ML1T2)(L)a2(ML3)b2(L1T1)c2}

Mass,

  {M0}={M1Mb2}0=1+b2b2=1

Time,

  {T0}={T2Tc2}0=2c2c2=2

Length,

  {L0}={L1La2L3b2Tc2}0=1+a2+3b2+c2a2=0

Putting values in π the term,

  π2=Pr0ρ1c2=Pρc2

Thus, from the equation of π1 and π2

  Iρc3=(Pρc2)f(Iρc2)

Conclusion:

In this way, we are able to produce a dimensionless relationship for sound intensity using an independent parameter.

  Iρc3=f(Iρc2)

Expert Solution
Check Mark
To determine

(b)

The expression for dimensionless relationship of I by using the force-based system of repeating variables by using distance r from the sound source as an additional independent parameter.

Answer to Problem 113P

Intensity by using force-based primary dimension systemI=[FL1T1]

For three repeating variables,

  1ρc3=f(1ρc2)

Explanation of Solution

Given:

   Sound pressure = p Density =ρ Sound speed = c Sound intencity = I Distance = rForce=f.

Concept Used:

The force-based primary dimension will be used in this question. In this system all the possible variables are replaced by the mass. Force, time, length dimensions are represented as, [F], [L] and [t].

Concept of Buckingham's Pi method will also be used. It is represented as,

  k=nj

Where,

n= number of physical variables

k =independent physical quantities

n = total number of variable parameters

Calculation:

  I=f(P,c,ρ)

Now, the primary dimensions of all parameters are given below:

speed of sound = c=[LT]

density = [forceaccerlationvolume]=[F L T 2 L3]=[FL1T2L3] = [F1L4T2]

pressure level = [forcearea] = [FL2]=[FL2]

Sound Intensity, I=[powerarea]=[F×LTL2]=[FL1T1]

The total mass of parameters, n = 5

No. Of primary dimensions, j = 3

Expected no of π term, k = n-j =2

Dependent p is calculated by using the I dependent variable.

Therefore,

  Π1=Iρa1cb1............equ (1)

By using primary dimensions,

  Π1=[F0L0T0]...............equ(2)

For, Iρa1cb1 is-

  [Iρa1cb1]=[(F1L1T1)( F 1 L 4 T 2)a1( L 1 T 1)b1]

From equ(1) and equ (2),

  [F0L0T0]=[(F1L1T1)( F 1 L 4 T 2)a1( L 1 T 1)b1]

Equating the exponents of both sides,

For force:

  [F0]=[F1,Fa1]

  0=1+a1a1=1

For time:

  [T0]=[T1,T2a1Tb1]

  0=1+2a1b10=12b1b1=3

Putting the values of a1 and b1 in equation (1),

  Π1=Iρ1c3

  Π1=1ρc3..................... (a)

Dependent p is calculated by using P independent variable.

Therefore,

  Π2=Pρa2cb2............equ (3)

By using primary dimensions,

  Π2=[F0L0T0]...............equ(4)

For, Pρa2cb2 is

  [Pρa2cb2]=[(FL2)( F 1 L 4T 2) a 2( L 1 T 1)b2]

From equ(3) and equ (4),

  [F0L0T0]=[(FL2)( F 1 L 4T 2) a 2( L 1 T 1)b2]

Equating the exponents of both sides,

For mass:

  [F0]=[F1,Fa2]

  0=1+a2a2=1

For time:

  [T0]=[T2a2,Tb2]

  0=2a2b2b2=2

Putting the values of a2 and b2 in equation (3),

  Π2=Pρ1c2

  Π2=Pρc2..................... (b)

From equation (a) and (b),

  1ρc3=f(1ρc2)

Conclusion:

Intensity by using force-based primary dimension system.

  I=[FL1T1]

For three repeating variables,

  1ρc3=f(1ρc2)

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
What is the Betz limit on wind turbines? Derive the Betz limit by writing the necessary admissions with the continuity and Bernoulli equation. State its meaning and importance.
In deriving the continuity equation, we assumed, for simplicity,that the mass fl ow per unit area on the left face wasjust ρ u . In fact, ρ u varies also with y and z , and thus it mustbe different on the four corners of the left face. Account forthese variations, average the four corners, and determinehow this might change the inlet mass fl ow from ρ u dy dz .
Repeat the fl at-plate momentum analysis  byreplacing Eq. given with the simple but unrealistic linearvelocity profi le suggested by Schlichting [1]:u/U≈y/δ  for 0 ≤y ≤δCompute momentum–integral estimates of cf, θ/x, δ*/x, andH.
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License