EBK LINEAR ALGEBRA AND ITS APPLICATIONS
6th Edition
ISBN: 9780135851043
Author: Lay
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6.6, Problem 7E
If a machine learns the least-squares line that best fits the data in Exercise 1, what will the machine pick for the value of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The following table gives retail values of a 2017 Corvette for various odometer readings.
(a) Find the equation of the least-squares line for the data. (Where odometer reading is the independent variable, x, and retail value is the dependent variable. Round your numerical values to two decimal places.)
y= ?
(b) Use the equation from part (a) to predict the retail price of a 2017 Corvette with an odometer reading of 28,000. Round to the nearest $100.
$ ?
(c) Find the linear correlation coefficient for these data. (Round your answer to four decimal places.)
r = ?
We use the form = a + bx for the least-squares line. In some computer printouts, the least-squares equation is not given directly. Instead, the value of the constant a is given, and the coefficient b of the explanatory or predictor variable is displayed. Sometimes a is referred to as the constant, and sometimes as the intercept. Data from Climatology Report No. 77-3 of the Department of Atmospheric Science, Colorado State University, showed the following relationship between elevation (in thousands of feet) and average number of frost-free days per year in Colorado locations.
A Minitab printout provides the following information.
Predictor
Coef
SE Coef
T
P
Constant
315.27
28.31
11.24
0.002
Elevation
-32.190
3.511
-8.79
0.003
S = 11.8603
R-Sq = 96.8%
Notice that "Elevation" is listed under "Predictor." This means that elevation is the explanatory variable x. Its coefficient is the slope b. "Constant" refers to a in the equation = a + bx.
(a) Use the printout to…
We use the form = a + bx for the least-squares line. In some computer printouts, the least-squares equation is not given directly. Instead, the value of the constant a is given, and the coefficient b of the explanatory or predictor variable is displayed. Sometimes a is referred to as the constant, and sometimes as the intercept. Data from Climatology Report No. 77-3 of the Department of Atmospheric Science, Colorado State University, showed the following relationship between elevation (in thousands of feet) and average number of frost-free days per year in Colorado locations. Minitab output is provided below.
Predictor Coef SE Coef T P
Constant 318.16 28.31 11.24 0.002
Elevation −30.878 3.511 −8.79 0.003
S = 11.8603 R-Sq = 96.3%
Notice that "Elevation" is listed under "Predictor." This means that elevation is the explanatory variable x. Its coefficient is the slope b. "Constant" refers to a in the equation = a…
Chapter 6 Solutions
EBK LINEAR ALGEBRA AND ITS APPLICATIONS
Ch. 6.1 - Let a = [21] and b = [31]. Compute abaa and...Ch. 6.1 - Let c = [4/312/3] and d = [561]. a. Find a unit...Ch. 6.1 - Prob. 3PPCh. 6.1 - Compute the quantities in Exercises 1—8 using...Ch. 6.1 - Prob. 2ECh. 6.1 - Compute the quantities in Exercises 1—8 using...Ch. 6.1 - Compute the quantities in Exercises 1—8 using...Ch. 6.1 - Compute the quantities in Exercises 1—8 using...Ch. 6.1 - Compute the quantities in Exercises 1—8 using...Ch. 6.1 - Compute the quantities in Exercises 1—8 using...
Ch. 6.1 - Prob. 8ECh. 6.1 - In Exercises 912, find a unit vector in the...Ch. 6.1 - Prob. 10ECh. 6.1 - In Exercises 912, find a unit vector in the...Ch. 6.1 - Prob. 12ECh. 6.1 - Find the distance between x = [103] and y = [15].Ch. 6.1 - Prob. 14ECh. 6.1 - Determine which pairs of vectors in Exercises 1518...Ch. 6.1 - Determine which pairs of vectors in Exercises 1518...Ch. 6.1 - Determine which pairs of vectors in Exercises 1518...Ch. 6.1 - Determine which pairs of vectors in Exercises 1518...Ch. 6.1 - In Exercises 19—28, all vectors are in Rn. Mark...Ch. 6.1 - In Exercises 19—28, all vectors are in Rn. Mark...Ch. 6.1 - In Exercises 19—28, all vectors are in Rn. Mark...Ch. 6.1 - In Exercises 19—28, all vectors are in Rn. Mark...Ch. 6.1 - Prob. 23ECh. 6.1 - Prob. 24ECh. 6.1 - Prob. 25ECh. 6.1 - Prob. 26ECh. 6.1 - Prob. 27ECh. 6.1 - Use the transpose definition of the inner product...Ch. 6.1 - Prob. 30ECh. 6.1 - Let u = [251] and v = [746]. Compute and compare...Ch. 6.1 - Verify the parallelogram law for vectors u and v...Ch. 6.1 - Let v = [ab] Describe the set H of vectors [xy]...Ch. 6.1 - Let u = [567], and let W be the set of all x in 3...Ch. 6.1 - Suppose a vector y is orthogonal to vectors u and...Ch. 6.1 - Suppose y is orthogonal to u and v. Show that y is...Ch. 6.1 - Let W = Span {v1,,vp}. Show that if x is...Ch. 6.1 - Let W be a subspace of n, and let W be the set of...Ch. 6.1 - Show that if x is in both W and W, then x = 0.Ch. 6.2 - Let u1= [1/52/5] and u2= [2/51/5]. Show that {u1....Ch. 6.2 - Let y and L be as in Example 3 and Figure 3....Ch. 6.2 - Let U and x be as in Example 6. and let y = [326]....Ch. 6.2 - Let U be an n n matrix with orthonormal columns....Ch. 6.2 - In Exercises 16, determine which sets of vectors...Ch. 6.2 - In Exercises 16, determine which sets of vectors...Ch. 6.2 - In Exercises 16, determine which sets of vectors...Ch. 6.2 - Prob. 4ECh. 6.2 - In Exercises 16, determine which sets of vectors...Ch. 6.2 - In Exercises 16, determine which sets of vectors...Ch. 6.2 - In Exercises 710, show that {u1, u2} or {u1, u2,...Ch. 6.2 - Prob. 8ECh. 6.2 - In Exercises 710, show that {u1, u2} or {u1, u2,...Ch. 6.2 - In Exercises 710, show that {u1, u2} or {u1, u2,...Ch. 6.2 - Compute the orthogonal projection of [17] onto the...Ch. 6.2 - Prob. 12ECh. 6.2 - Let y = [23] and u = [47] Write y as the sum of...Ch. 6.2 - Let y=26 and u=61. Write y as the sum of a vector...Ch. 6.2 - Let y = [31] and u = [86] Compute the distance...Ch. 6.2 - Let y = [39] and u = [12] Compute the distance...Ch. 6.2 - In Exercises 1722, determine which sets of vectors...Ch. 6.2 - In Exercises 1722, determine which sets of vectors...Ch. 6.2 - In Exercises 1722, determine which sets of vectors...Ch. 6.2 - In Exercises 1722, determine which sets of vectors...Ch. 6.2 - In Exercises 1722, determine which sets of vectors...Ch. 6.2 - In Exercises 1722, determine which sets of vectors...Ch. 6.2 - In Exercises 23—32, all vectors are in Rn. Mark...Ch. 6.2 - Prob. 24ECh. 6.2 - Prob. 25ECh. 6.2 - Prob. 26ECh. 6.2 - Prob. 27ECh. 6.2 - Prob. 28ECh. 6.2 - Prob. 29ECh. 6.2 - Prob. 30ECh. 6.2 - Prob. 31ECh. 6.2 - Prob. 32ECh. 6.2 - Prove Theorem 7. [Hint: For (a), compute |Ux||2,...Ch. 6.2 - Suppose W is a sub space of n spanned by n nonzero...Ch. 6.2 - Let U be a square matrix with orthonormal columns....Ch. 6.2 - Let U be an n n orthogonal matrix. Show that the...Ch. 6.2 - Let U and V be n n orthogonal matrices. Explain...Ch. 6.2 - Let U be an orthogonal matrix, and construct V by...Ch. 6.2 - Show that the orthogonal projection of a vector y...Ch. 6.2 - Let {v1, v2} be an orthogonal set of nonzero...Ch. 6.2 - Prob. 41ECh. 6.2 - Given u 0 in n, let L = Span{u}. For y in n, the...Ch. 6.2 - Prob. 43ECh. 6.2 - In parts (a)—(d), let U be the matrix formed by...Ch. 6.3 - Let u1 = [714], u2 = [112], x = [916], and W =...Ch. 6.3 - Let W be a subspace of n. Let x and y be vectors...Ch. 6.3 - In Exercises 1 and 2, you may assume that {u1,,...Ch. 6.3 - u1 = [1211], u2 = [2111], u3 = [1121], u4 =...Ch. 6.3 - In Exercises 36, verify that {u1, u2} is an...Ch. 6.3 - In Exercises 3—6, verify that u1,u2 is an...Ch. 6.3 - In Exercises 36, verify that {u1, u2} is an...Ch. 6.3 - Prob. 6ECh. 6.3 - In Exercises 710, let W be the subspace spanned by...Ch. 6.3 - In Exercises 710, let W be the subspace spanned by...Ch. 6.3 - In Exercises 710, let W be the subspace spanned by...Ch. 6.3 - In Exercises 710, let W be the subspace spanned by...Ch. 6.3 - In Exercises 11 and 12, find the closest point to...Ch. 6.3 - In Exercises 11 and 12, find the closest point to...Ch. 6.3 - In Exercises 13 and 14, find the best...Ch. 6.3 - In Exercises 13 and 14, find the best...Ch. 6.3 - Let y = [595], u1 = [351], u2 = [321]. Find die...Ch. 6.3 - Let y, v1, and v2 be as in Exercise 12. Find the...Ch. 6.3 - Let y = [481], u1 = [2/31/32/3], u2 = [2/32/31/3],...Ch. 6.3 - Let y = [79], u1 = [1/103/10], and W = Span {u1}....Ch. 6.3 - Let u1 = [112], u2 = [512], and u3 = [001].Note...Ch. 6.3 - Let u1 and u2 be as in Exercise 19, and let u4 =...Ch. 6.3 - Prob. 21ECh. 6.3 - Prob. 22ECh. 6.3 - Prob. 23ECh. 6.3 - Prob. 24ECh. 6.3 - In Exercises 23—30, all vectors and subspaces...Ch. 6.3 - Prob. 26ECh. 6.3 - Prob. 27ECh. 6.3 - In Exercises 23—30, all vectors and subspaces...Ch. 6.3 - Prob. 29ECh. 6.3 - Prob. 30ECh. 6.3 - Let A be an mn matrix. Prove that every vector x...Ch. 6.3 - Prob. 32ECh. 6.3 - Prob. 35ECh. 6.3 - Prob. 36ECh. 6.3 - Prob. 37ECh. 6.3 - Prob. 38ECh. 6.4 - Let W = Span {x1, x2}, where x1 = [111] and x2 =...Ch. 6.4 - Suppose A = QR, where Q is an m n matrix with...Ch. 6.4 - In Exercises 1-6, the given set is a basis for a...Ch. 6.4 - In Exercises 1-6, the given set is a basis for a...Ch. 6.4 - In Exercises 1-6, the given set is a basis for a...Ch. 6.4 - In Exercises 1-6, the given set is a basis for a...Ch. 6.4 - In Exercises 1-6, the given set is a basis for a...Ch. 6.4 - In Exercises 1-6, the given set is a basis for a...Ch. 6.4 - Find an orthonormal basis of the subspace spanned...Ch. 6.4 - Find an orthonormal basis of the subspace spanned...Ch. 6.4 - Find an orthogonal basis for the column space of...Ch. 6.4 - Find an orthogonal basis for the column space of...Ch. 6.4 - Find an orthogonal basis for the column space of...Ch. 6.4 - Find an orthogonal basis for the column space of...Ch. 6.4 - In Exercises 13 and 14, the columns of Q were...Ch. 6.4 - In Exercises 13 and 14, the columns of Q were...Ch. 6.4 - Find a QR factorization of the matrix in Exercise...Ch. 6.4 - Find a QR factorization of the matrix in Exercise...Ch. 6.4 - Prob. 17ECh. 6.4 - Prob. 18ECh. 6.4 - Prob. 19ECh. 6.4 - Prob. 20ECh. 6.4 - Prob. 21ECh. 6.4 - Prob. 22ECh. 6.4 - Suppose A = QR, where Q is m n and R is n n....Ch. 6.4 - Suppose A = QR, where R is an invertible matrix....Ch. 6.4 - Given A = QR as in Theorem 12, describe how to...Ch. 6.4 - Let u1, , up be an orthogonal basis for a subspace...Ch. 6.4 - Suppose A = QR is a QR factorization of an m n...Ch. 6.4 - [M] Use the Gram-Schmidt process as in Example 2...Ch. 6.5 - Let A = [133151172] and b = [535]. Find a...Ch. 6.5 - What can you say about the least-squares solution...Ch. 6.5 - In Exercises 1-4, find a least-squares solution of...Ch. 6.5 - In Exercises 1-4, find a least-squares solution of...Ch. 6.5 - In Exercises 1-4, find a least-squares solution of...Ch. 6.5 - In Exercises 1-4, find a least-squares solution of...Ch. 6.5 - In Exercises 5 and 6, describe all least-squares...Ch. 6.5 - In Exercises 5 and 6, describe all least-squares...Ch. 6.5 - Compute the least-squares error associated with...Ch. 6.5 - Compute the least-squares error associated with...Ch. 6.5 - In Exercises 9-12, find (a) the orthogonal...Ch. 6.5 - In Exercises 9-12, find (a) the orthogonal...Ch. 6.5 - In Exercises 9-12, find (a) the orthogonal...Ch. 6.5 - In Exercises 9-12, find (a) the orthogonal...Ch. 6.5 - Let A = [342134], b = [1195], u = [51], and v =...Ch. 6.5 - Let A = [213432], b = [544], u = [45], and v =...Ch. 6.5 - In Exercises 15 and 16, use the factorization A =...Ch. 6.5 - In Exercises 15 and 16, use the factorization A =...Ch. 6.5 - In Exercises 17—26, A is an mn matrix and b is...Ch. 6.5 - Prob. 18ECh. 6.5 - Prob. 19ECh. 6.5 - Prob. 20ECh. 6.5 - Prob. 21ECh. 6.5 - Prob. 22ECh. 6.5 - Prob. 23ECh. 6.5 - Prob. 24ECh. 6.5 - Prob. 25ECh. 6.5 - Prob. 26ECh. 6.5 - Let A be an m n matrix. Use the steps below to...Ch. 6.5 - Let A be an m n matrix such that ATA is...Ch. 6.5 - Prob. 29ECh. 6.5 - Prob. 30ECh. 6.5 - Suppose A is m n with linearly independent...Ch. 6.5 - Find a formula for the least-squares solution of...Ch. 6.5 - Describe all least-squares solutions of the system...Ch. 6.6 - When the monthly sales of a product are subject to...Ch. 6.6 - In Exercises 1-4, find the equation y = 0 + 1x of...Ch. 6.6 - In Exercises 1-4, find the equation y = 0 + 1x of...Ch. 6.6 - In Exercises 1-4, find the equation y = 0 + 1x of...Ch. 6.6 - In Exercises 1-4, find the equation y = 0 + 1x of...Ch. 6.6 - Prob. 5ECh. 6.6 - Prob. 6ECh. 6.6 - If a machine learns the least-squares line that...Ch. 6.6 - Prob. 8ECh. 6.6 - Prob. 9ECh. 6.6 - Prob. 10ECh. 6.6 - Let X be the design matrix used to find the...Ch. 6.6 - Let X be the design matrix in Example 2...Ch. 6.6 - Prob. 13ECh. 6.6 - Prob. 14ECh. 6.6 - A certain experiment produces the data (1, 7.9),...Ch. 6.6 - Let x=1n(x1++xn) and y=1n(y1++yn). Show that the...Ch. 6.6 - Derive the normal equations (7) from the matrix...Ch. 6.6 - Use a matrix inverse to solve the system of...Ch. 6.6 - a. Rewrite the data in Example 1 with new...Ch. 6.6 - Suppose the x-coordinates of the data (x1, y1), ,...Ch. 6.6 - Exercises 19 and 20 involve a design matrix X with...Ch. 6.6 - Show that X2=TXTy. [Hint: Rewrite the left side...Ch. 6.7 - Use the inner product axioms to verify the...Ch. 6.7 - Use the inner product axioms to verify the...Ch. 6.7 - Let 2 have the inner product of Example 1, and let...Ch. 6.7 - Let 2 have the inner product of Example 1. Show...Ch. 6.7 - Exercises 3-8 refer to 2 with the inner product...Ch. 6.7 - Exercises 3-8 refer to 2 with the inner product...Ch. 6.7 - Exercises 3-8 refer to 2 with the inner product...Ch. 6.7 - Exercises 3-8 refer to 2 with the inner product...Ch. 6.7 - Exercises 3-8 refer to 2 with the inner product...Ch. 6.7 - Exercises 3-8 refer to 2 with the inner product...Ch. 6.7 - Let 3 have the inner product given by evaluation...Ch. 6.7 - Let 3 have the inner product as in Exercise 9,...Ch. 6.7 - Let p0, p1, and p2 be the orthogonal polynomials...Ch. 6.7 - Find a polynomial p3 such that {p0, p1, p2, p3}...Ch. 6.7 - Let A be any invertible n n matrix. Show that for...Ch. 6.7 - Let T be a one-to-one linear transformation from a...Ch. 6.7 - Use the inner product axioms and other results of...Ch. 6.7 - Use the inner product axioms and other results of...Ch. 6.7 - Use the inner product axioms and other results of...Ch. 6.7 - Use the inner product axioms and other results of...Ch. 6.7 - Prob. 19ECh. 6.7 - Prob. 20ECh. 6.7 - Prob. 21ECh. 6.7 - Prob. 22ECh. 6.7 - Prob. 23ECh. 6.7 - Prob. 24ECh. 6.7 - Given a 0 and b 0, let u=[ab] and v=[ba]. Use...Ch. 6.7 - Let u=[ab] and v=[11]. Use the Cauchy-Schwarz...Ch. 6.7 - Exercises 21-24 refer to V = C[0, 1], with the...Ch. 6.7 - Exercises 21-24 refer to V = C[0, 1], with the...Ch. 6.7 - Prob. 29ECh. 6.7 - Prob. 30ECh. 6.7 - Let V be the space C[1, 1] with the inner product...Ch. 6.7 - Let V be the space C[2, 2] with the inner product...Ch. 6.8 - Let q1(t) = 1, q2(t) = t, and q3(t) = 3t2 4....Ch. 6.8 - Find the first-order and third-order Fourier...Ch. 6.8 - Find the least-squares line y = 0 + 1x that best...Ch. 6.8 - Suppose 5 out of 25 data points in a weighted...Ch. 6.8 - Fit a cubic trend function to the data in Example...Ch. 6.8 - To make a trend analysis of six evenly spaced data...Ch. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - Prob. 7ECh. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - [M] Let f4 and f5 be the fourth-order and...Ch. 6 - Prob. 1SECh. 6 - Prob. 2SECh. 6 - Prob. 3SECh. 6 - Prob. 4SECh. 6 - Prob. 5SECh. 6 - Prob. 6SECh. 6 - Prob. 7SECh. 6 - Prob. 8SECh. 6 - Prob. 9SECh. 6 - Prob. 10SECh. 6 - Prob. 11SECh. 6 - Prob. 12SECh. 6 - Prob. 13SECh. 6 - Prob. 14SECh. 6 - The statements in Exercises 1—19 refer to...Ch. 6 - Prob. 16SECh. 6 - Prob. 20SECh. 6 - Let {v1, , vp} be an orthonormal set in n. Verify...Ch. 6 - Let U be an n n orthogonal matrix. Show that if...Ch. 6 - Show that if an n n matrix U satisfies (Ux) (Uy)...Ch. 6 - Show that if U is an orthogonal matrix, then any...Ch. 6 - A Householder matrix, or an elementary reflector,...Ch. 6 - Let T: n n be a linear transformation that...Ch. 6 - Let u and v be linearly independent vectors in n...Ch. 6 - Suppose the columns of A are linearly independent....Ch. 6 - If a, b, and c are distinct numbers, then the...Ch. 6 - Consider the problem of finding an eigenvalue of...Ch. 6 - Use the steps below to prove the following...Ch. 6 - Explain why an equation Ax = b has a solution if...Ch. 6 - Exercises 15 and 16 concern the (real) Schur...Ch. 6 - Let A be an n n matrix with n real eigenvalues,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- The accompanying data resulted from an experiment in which weld diameter x and shear strength y (in pounds) were determined for five different spot welds on steel. A scatterplot shows a pronounced linear pattern. The least-squares line is = -964.98 + 8.60x. Because 1 lb = 0.4536 kg, strength observations can be re-expressed in kilograms through multiplication by this conversion factor: new y = 0.4536(old y). What is the equation of the least-squares line when y is expressed in kilograms? (Give the answer to two decimal places.) = x 202.9 212.9 222.9 232.9 242.8 y 814.5 786.1 961.2 1118.8 1077.0arrow_forwardWe use the form ŷ = a + bx for the least-squares line. In some computer printouts, the least-squares equation is not given directly. Instead, the value of the constant a is given, and the coefficient b of the explanatory or predictor variable is displayed. Sometimes a is referred to as the constant, and sometimes as the intercept. Data from Climatology Report No. 77-3 of the Department of Atmospheric Science, Colorado State University, showed the following relationship between elevation (in thousands of feet) and average number of frost-free days per year in Colorado locations. A Minitab printout provides the following information. Predictor Constant Elevation Coef 315.00 -29.166 SE Coef 28.31 3.511 I 11.24 -8.79 P 0.002 0.003 S = 11.8603 R-Sq = 96.44 Notice that "Elevation" is listed under "Predictor." This means that elevation is the explanatory variable x. Its coefficient is the slope b. "Constant" refers to a in the equation ŷ = a + bx. (c) The printout gives the value of the…arrow_forwardEach month for several months, the average temperature in °C (x) and the number of pounds of steam (y) consumed by a certain chemical plant were measured. The least-squares line computed from the resulting data is y = 245.82 + 1.13x. Predict the number of pounds of steam consumed in a month where the average temperature is 65°C. If two months differ in their average temperatures by 5°C, by how much do you predict the number of pounds of steam consumed to differ?arrow_forward
- A lab received a new instrument to measure pH. To compare the new instrument to the old lab instrument, 11 samples were measured with both pieces of equipment. Using the data (below), find the least squares equation (x = "pH old" and Y = "pH new") and then predict the value on the new instrument if the old instrument gave a pH of 6.30. Enter your answer using 3 significant digits. pH Old pH New 6.35 6.16 6.01 5.95 6.15 6.05 6 6.01 6.11 6.06 5.93 5.83 5.84 5.81 5.63 5.71 5.63 5.74 6.11 6.1 6.07 6.01arrow_forwardWe use the form ŷ = a + bx for the least-squares line. In some computer printouts, the least-squares equation is not given directly. Instead, the value of the constant a is given, and the coefficient b of the explanatory or predictor variable is displayed. Sometimes a is referred to as the constant, and sometimes as the intercept. Data from a report showed the following relationship between elevation (in thousands of feet) and average number of frost-free days per year in a state. A Minitab printout provides the following information. Predictor Coef SE Coef T P Constant 315.27 28.31 11.24 0.002 Elevation -31.353 3.511 -8.79 0.003 S = 11.8603 R-Sq = 96.0% Notice that "Elevation" is listed under "Predictor." This means that elevation is the explanatory variable x. Its coefficient is the slope b. "Constant" refers to a in the equation ŷ = a + bx. (a) Use the printout to write the least-squares equation. ŷ = + x (b) For each 1000-foot increase in elevation, how…arrow_forwardWe use the form ŷ = a + bx for the least-squares line. In some computer printouts, the least-squares equation is not given directly. Instead, the value of the constant a is given, and the coefficient b of the explanatory or predictor variable is displayed. Sometimes a is referred to as the constant, and sometimes as the intercept. Data from a report showed the following relationship between elevation (in thousands of feet) and average number of frost-free days per year in a state. A Minitab printout provides the following information. Predictor Coef SE Coef T P Constant 315.27 28.31 11.24 0.002 Elevation -31.812 3.511 -8.79 0.003 S = 11.8603 R-Sq = 96.8% Notice that "Elevation" is listed under "Predictor." This means that elevation is the explanatory variable x. Its coefficient is the slope b. "Constant" refers to a in the equation ŷ = a + bx. (a) Use the printout to write the least-squares equation. ŷ = + x (b) For each 1000-foot increase in elevation,…arrow_forward
- We use the form ŷ = a + bx for the least-squares line. In some computer printouts, the least-squares equation is not given directly. Instead, the value of the constant a is given, and the coefficient b of the explanatory or predictor variable is displayed. Sometimes a is referred to as the constant, and sometimes as the intercept. Data from a report showed the following relationship between elevation (in thousands of feet) and average number of frost-free days per year in a state. A Minitab printout provides the following information. Predictor Coef SE Coef T P Constant 316.08 28.31 11.24 0.002 Elevation -31.974 3.511 -8.79 0.003 S = 11.8603 R-Sq = 97.8% Notice that "Elevation" is listed under "Predictor." This means that elevation is the explanatory variable x. Its coefficient is the slope b. "Constant" refers to a in the equation ŷ = a + bx. (a) Use the printout to write the least-squares equation. ŷ = 316.08 +-31.974x For each 1000-foot increase in…arrow_forwardWe use the form ŷ = a + bx for the least-squares line. In some computer printouts, the least-squares equation is not given directly. Instead, the value of the constant a is given, and the coefficient b of the explanatory or predictor variable is displayed. Sometimes a is referred to as the constant, and sometimes as the intercept. Data from a report showed the following relationship between elevation (in thousands of feet) and average number of frost-free days per year in a state. A Minitab printout provides the following information. Predictor Coef SE Coef T P Constant 316.62 28.31 11.24 0.002 Elevation -30.516 3.511 -8.79 0.003 S = 11.8603 R-Sq = 96.2% The printout gives the value of the coefficient of determination r2. What is the value of r? Be sure to give the correct sign for r based on the sign of b. (Round your answer to four decimal places.) What percentage of the variation in y can be explained by the corresponding variation in x and the least-squares…arrow_forwardWe use the form ŷ = a + bx for the least-squares line. In some computer printouts, the least-squares equation is not given directly. Instead, the value of the constant a is given, and the coefficient b of the explanatory or predictor variable is displayed. Sometimes a is referred to as the constant, and sometimes as the intercept. Data from a report showed the following relationship between elevation (in thousands of feet) and average number of frost-free days per year in a state. A Minitab printout provides the following information. Predictor Coef SE Coef T. Constant 317.97 28.31 11.24 0.002 Elevation -28.572 3.511 -8.79 0.003 S = 11.8603 R-Sq 94.2% %3D Notice that "Elevation" is listed under "Predictor." This means that elevation is the explanatory variable x. Its coefficient is the slope b. "Constant" refers to a in the equation ŷ = a + bx. (a) Use the printout to write the least-squares equation. %3D (b) For each 1000-foot increase in elevation, how many fewer frost-free days are…arrow_forward
- We use the form ŷ = a + bx for the least-squares line. In some computer printouts, the least-squares equation is not given directly. Instead, the value of the constant a is given, and the coefficient b of the explanatory or predictor variable is displayed. Sometimes a is referred to as the constant, and sometimes as the intercept. Data from a report showed the following relationship between elevation (in thousands of feet) and average number of frost-free days per year in a state. A Minitab printout provides the following information. Predictor Сoef SE Coef T Constant 317.43 28.31 11.24 0.002 Elevation -31.272 3.511 -8.79 0.003 S = 11.8603 R-Sq = 96.2% Notice that "Elevation" is listed under "Predictor." This means that elevation is the explanatory variable x. Its coefficient is the slope b. "Constant" refers to a in the equation ŷ = a + bx. (a) Use the printout to write the least-squares equation. ŷ = 317.43 -31.272 (b) For each 1000-foot increase in elevation, how many fewer…arrow_forwardWe use the form ý = a + bx for the least-squares line. In some computer printouts, the least-squares equation is not given directly. Instead, the value of the constant a is given, and the coefficient b of the explanatory or predictor variable is displayed. Sometimes a is referred to as the constant, and sometimes as the intercept. Data from a report showed the following relationship between elevation (in thousands of feet) and average number of frost-free days per year in a state. %3D A Minitab printout provides the following information. Predictor Сoef SE Coef P Constant 315.54 28.31 11.24 0.002 Elevation -28.950 3.511 -8.79 0.003 S = 11.8603 R-Sq = 96.2% Notice that "Elevation" is listed under "Predictor." This means that elevation is the explanatory variable x. Its coefficient is the slope b. "Constant" refers to a in the equation ŷ = a + bx. (a) Use the printout to write the least-squares equation. = 315.54 X x (b) For each 1000-foot increase in elevation, how many fewer frost-free…arrow_forwardWe use the form ŷ = a + bx for the least-squares line. In some computer printouts, the least-squares equation is not given directly. Instead, the value of the constant a is given, and the coefficient b of the explanatory or predictor variable is displayed. Sometimes a is referred to as the constant, and sometimes as the intercept. Data from a report showed the following relationship between elevation (in thousands of feet) and average number of frost-free days per year in a state. A Minitab printout provides the following information. Predictor Сoef SE Coef T P Constant 315.81 28.31 11.24 0.002 Elevation -32.136 3.511 -8.79 0.003 S = 11.8603 R-Sq = 96.6% Notice that "Elevation" is listed under "Predictor." This means that elevation is the explanatory variable x. Its coefficient is the slope b. "Constant" refers to a in the equation ŷ = a + bx. (a) Use the printout to write the least-squares equation. ŷ = 315.81 + -32.136 (b) For each 1000-foot increase in elevation, how many fewer…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Finding Local Maxima and Minima by Differentiation; Author: Professor Dave Explains;https://www.youtube.com/watch?v=pvLj1s7SOtk;License: Standard YouTube License, CC-BY