EBK CHEMISTRY: ATOMS FIRST
3rd Edition
ISBN: 8220103675505
Author: Burdge
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.4, Problem 6.4.1SR
Interpretation Introduction
Interpretation: The formal charges of
Concept Introduction
- A formal charge (FC) is the charge assigned to an atom in a molecule, irrespective of relative electronegativity by thinking that electrons in all
chemical bonds are shared equally among atoms. - This method is used to identify the most probable Lewis structures if more than one possibility exists for a compound.
- The Lewis structure with formal charge on each of the atoms close to zero is taken as the most plausible structure.
- Formal charge of an atom can be determined by the given formula.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two possible Lewis diagrams for sulfine (H2CSO) are
H
H.
c=s-ö:
C-s=0
H
H
(a) Compute the formal charges on all atoms.
(b) Draw a Lewis diagram for which all the atoms in
sulfine have formal charges of zero.
Draw a Lewis Structure for each of the following species and assign formal charge where appropriate. Using electronegative values from the period table that was provided identify polar covalent bonds and label the atoms δ+ and δ−. For each of the molecules indicate whether or not it has a dipole moment. (a)CH5N (b) HCN (c) H2CO (d) CH3NC(e) CH3SOCH3 (f) H6BN
Be sure to answer all parts. Determine the formal charges on each atom in the carbonate ion
(
CO32−
)
.
(a) C atom
−2
−1
0
+1
+2
(b) Single bonded O atoms
−2
−1
0
+1
+2
(c) Double bonded O atom
−2
−1
0
+1
+2
Chapter 6 Solutions
EBK CHEMISTRY: ATOMS FIRST
Ch. 6.2 - Classify the following bonds as nonpolar, polar,...Ch. 6.2 - Classify the following bonds as nonpolar, polar,...Ch. 6.2 - Prob. 1PPBCh. 6.2 - Electrostatic potential maps are shown for HCl and...Ch. 6.2 - Prob. 6.2WECh. 6.2 - Prob. 2PPACh. 6.2 - Prob. 2PPBCh. 6.2 - Prob. 2PPCCh. 6.2 - Prob. 6.3WECh. 6.2 - Prob. 3PPA
Ch. 6.2 - Prob. 3PPBCh. 6.2 - Prob. 6.2.1SRCh. 6.2 - Prob. 6.2.2SRCh. 6.2 - Using data from Table 6.2, calculate the magnitude...Ch. 6.2 - Prob. 6.2.4SRCh. 6.3 - Draw the Lewis structure for carbon disulfide...Ch. 6.3 - Prob. 4PPACh. 6.3 - Prob. 4PPBCh. 6.3 - Prob. 4PPCCh. 6.3 - Prob. 6.3.1SRCh. 6.3 - Prob. 6.3.2SRCh. 6.4 - The widespread use of fertilizers has resulted in...Ch. 6.4 - Prob. 5PPACh. 6.4 - Prob. 5PPBCh. 6.4 - Prob. 5PPCCh. 6.4 - Formaldehyde (CH2O), which can be used 10 preserve...Ch. 6.4 - Prob. 6PPACh. 6.4 - Prob. 6PPBCh. 6.4 - Prob. 6PPCCh. 6.4 - Prob. 6.4.1SRCh. 6.4 - Prob. 6.4.2SRCh. 6.5 - Prob. 6.7WECh. 6.5 - Prob. 7PPACh. 6.5 - Prob. 7PPBCh. 6.5 - Prob. 7PPCCh. 6.5 - How many resonance structures can be drawn for the...Ch. 6.5 - Indicate which of the following are resonance...Ch. 6.6 - Prob. 6.8WECh. 6.6 - Prob. 8PPACh. 6.6 - Prob. 8PPBCh. 6.6 - Prob. 8PPCCh. 6.6 - Prob. 6.9WECh. 6.6 - Prob. 9PPACh. 6.6 - Prob. 9PPBCh. 6.6 - Elements in the same group exhibit similar...Ch. 6.6 - Draw three resonance structures for the hydrogen...Ch. 6.6 - Draw two resonance structures for each speciesone...Ch. 6.6 - Prob. 10PPCCh. 6.6 - Prob. 6.6.1SRCh. 6.6 - Which elements cannot have more than an octet of...Ch. 6.6 - How many electrons are around the central atom in...Ch. 6 - Which of the following atoms must always obey the...Ch. 6 - Prob. 6.2KSPCh. 6 - Prob. 6.3KSPCh. 6 - How many lone pairs are on the central atom in the...Ch. 6 - Prob. 6.1QPCh. 6 - Prob. 6.2QPCh. 6 - Prob. 6.3QPCh. 6 - Prob. 6.4QPCh. 6 - Prob. 6.5QPCh. 6 - Prob. 6.6QPCh. 6 - Prob. 6.7QPCh. 6 - Prob. 6.8QPCh. 6 - For each of the following pairs of elements, state...Ch. 6 - Define electronegativity and explain the...Ch. 6 - Prob. 6.11QPCh. 6 - Prob. 6.12QPCh. 6 - Prob. 6.13QPCh. 6 - Prob. 6.14QPCh. 6 - Prob. 6.15QPCh. 6 - Prob. 6.16QPCh. 6 - Arrange the following bonds in order of increasing...Ch. 6 - Prob. 6.18QPCh. 6 - Prob. 6.19QPCh. 6 - Prob. 6.20QPCh. 6 - Prob. 6.21QPCh. 6 - Prob. 6.22QPCh. 6 - Prob. 6.23QPCh. 6 - Prob. 6.24QPCh. 6 - Prob. 6.25QPCh. 6 - Prob. 6.26QPCh. 6 - Prob. 6.27QPCh. 6 - Prob. 6.28QPCh. 6 - Prob. 6.30QPCh. 6 - Prob. 6.31QPCh. 6 - Prob. 6.32QPCh. 6 - Prob. 6.33QPCh. 6 - Prob. 6.34QPCh. 6 - Draw all of the resonance structures for the...Ch. 6 - Prob. 6.36QPCh. 6 - Prob. 6.37QPCh. 6 - Draw three resonance structures for the molecule...Ch. 6 - Draw three reasonable resonance structures for the...Ch. 6 - Indicate which of the following are resonance...Ch. 6 - Prob. 6.41QPCh. 6 - Prob. 6.42QPCh. 6 - Draw a resonance structure of the guanine molecule...Ch. 6 - Prob. 6.44QPCh. 6 - Give three examples of compounds that do not...Ch. 6 - Prob. 6.46QPCh. 6 - Prob. 6.47QPCh. 6 - Prob. 6.48QPCh. 6 - Prob. 6.49QPCh. 6 - Prob. 6.50QPCh. 6 - Prob. 6.51QPCh. 6 - Prob. 6.52QPCh. 6 - Prob. 6.53QPCh. 6 - Draw Lewis structures for the radical species ClF2...Ch. 6 - Prob. 6.55QPCh. 6 - Prob. 6.56QPCh. 6 - Prob. 6.57QPCh. 6 - Prob. 6.58QPCh. 6 - Prob. 6.59QPCh. 6 - Prob. 6.60QPCh. 6 - Give an example of an ion or molecule containing...Ch. 6 - Prob. 6.62QPCh. 6 - Prob. 6.63QPCh. 6 - Prob. 6.64QPCh. 6 - Are the following statements true or false? (a)...Ch. 6 - Prob. 6.66QPCh. 6 - Prob. 6.67QPCh. 6 - Most organic acids can be represented as RCOOH,...Ch. 6 - Prob. 6.69QPCh. 6 - Prob. 6.70QPCh. 6 - Prob. 6.71QPCh. 6 - The following species have been detected in...Ch. 6 - Prob. 6.73QPCh. 6 - Prob. 6.74QPCh. 6 - The triiodide ion (I3) in which the I atoms are...Ch. 6 - Prob. 6.76QPCh. 6 - Prob. 6.77QPCh. 6 - The chlorine nitrate (ClONO2) molecule is believed...Ch. 6 - Prob. 6.79QPCh. 6 - For each of the following organic molecules draw a...Ch. 6 - Prob. 6.81QPCh. 6 - Draw Lewis structures for the following organic...Ch. 6 - Draw Lewis structures for the following four...Ch. 6 - Prob. 6.84QPCh. 6 - Prob. 6.85QPCh. 6 - Draw three resonance structures for (a) the...Ch. 6 - Prob. 6.87QPCh. 6 - Prob. 6.88QPCh. 6 - Prob. 6.89QPCh. 6 - Draw a Lewis structure for nitrogen pentoxide...Ch. 6 - Prob. 6.91QPCh. 6 - Nitrogen dioxide (NO2) is a stable compound....Ch. 6 - Prob. 6.93QPCh. 6 - Vinyl chloride (C2H3Cl) differs from ethylene...Ch. 6 - Prob. 6.95QPCh. 6 - Prob. 6.96QPCh. 6 - In 1999 an unusual cation containing only nitrogen...Ch. 6 - Prob. 6.98QPCh. 6 - Prob. 6.99QPCh. 6 - Electrostatic potential maps for three compounds...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 28 What is the correct structure of (Z)-3,4-dimethylhept-3-enoic acid? (1) (2) (3) (4) CH3CH₂ COOH COOH COOH .COOHarrow_forwardot t t Specify the formal charges (both sign and magnitude) on the atoms labelled a-c. a b c H₂C-C=N=0: a) b) c) Ⓒarrow_forwardWhat is the calculated formal charge for carbon (C) in the CNO- ion's most stable resonance state? (6C, 7N, 8O)arrow_forward
- Which of the following bonds are polar? Which is the more electronegative atom in cach polar bond? (a) B-F (b) Cl-CI (c) Se-O (d) H–I Arrange the bonds in cach of the following sets in order of inereasing polarity: (a) C-F, O–F, Be-F; (b) 0-CI, S-Br, C-P; (c) C-S, B–F, N-0.arrow_forwardCalculate the electronegativity difference │EN│ for each of the following bonds (include one decimal place, e.g., "0.0") (a) H-Cl (b) Na-O (c) Si-P (d) I-Farrow_forwardClick on the atom with the highest negative charge in each of the following bonds. In the case of a non-polar bond, click on neither atom. (CH3)3Si-OH and HO-CI Specify the formal charges (both sign and magnitude) on the atoms labelled a-c. c b a :0= a b c H₂C-N-N=N: 0 ✓b) +1 ✓ -1 ♥ a) -1 b) +1 c) 0 Varrow_forward
- Draw Lewis structures for the following compounds and ions, showing appropriateformal charges.(a) [CH3OH2 ]+ (b) NH4Cl (c) (CH3)4NCl(d) NaOCH3 (e) +CH3 (f) -CH3(g) NaBH4 (h) NaBH3CN (i) (CH3)2O¬BF3(j) [HONH3]+ (k) KOC(CH3)3 (l) [H2C“OH]arrow_forward1-What is the formal charges on B and Br (with double bond) in the following structure? a) 0, 0 b) +1, + 1 c) -1, +1 d) 0, +1 :Br: Br Br: 2- The polarity of a covalent bond is due to (a) lesser electronegativity difference between two atoms (b) greater electronegativity difference between two atoms (c) lesser bond energy (d) greater bond energy 3- A CO, molecule contains two polar bonds, but the net dipole moment is zero. It is because: (a) the molecule has symmetrical linear geometry and dipole moments cancel out each other (b) the molecule is non-linear (c) the electronegativity difference between the two atoms is too large (d) the electronegativity difference between the two atoms is too smallarrow_forwardSpecify the formal charges (both sign and magnitude) on the atoms labelled a-c. a b с H₂C=N=N: C a HN: NH b) +1c) -1 ✓ a) -1 ✓ b) 0 ✓C) Varrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY