Concept explainers
Expand Your Knowledge: Geometric
Geometric Distribution
Suppose we have an experiment in which we repeat binomial trials until we get our first success, and then we stop. Let n be the number of the trial on which we get our first success. In this context, n is not a fixed number. In fact, n could be any of the numbers 1, 2, 3, and so on. What is the probability that our first success comes on the nth trial? The answer is given by the geometric probability distribution.
On the leeward side of the island of Oahu, in the small village of Nanakuli, about 80% of the residents are of Hawaiian ancestry (Source: The HonoluluAdvertiser). Let n = 1, 2, 3,... represent the number of people you must meet until you encounter the first person of Hawaiian ancestry in the village of Nanakuli.
(a) Write out a formula for the probability distribution of the random variable n.
(b) Compute the probabilities that
Hint:
(d) What is the expected number of residents in Nanakuli you must meet before you encounter the first person of Hawaiian ancestry? Hint: Use
Trending nowThis is a popular solution!
Chapter 6 Solutions
Understanding Basic Statistics
- Quality Control To control the quality of their product, the Bright-Light Company inspects three light bulbs out of each batch of ten bulbs manufactured. If a defective bulb is found, the batch is discarded. Suppose a batch contains two defective bulbs. What is the probability that the batch will be discarded?arrow_forwardFlexible Work Hours In a recent survey, people were asked whether they would prefer to work flexible hours----even when it meant slower career advancement----so they could spend more time with their families. The figure shows the results of the survey. What is the probability that three people chosen at random would prefer flexible work hours?arrow_forwardIn Example 8, what is the probability that an employee chosen at random has 30 or more years of service?arrow_forward
- (a) An experiment has two outcomes, "success" and "failure„" where the probability of success" is p. The experiment is performed n times. What of probability is with this experiment? (b) What is the probability that success occurs exactly r times? (c) An archer has probability 0.6 Of hitting the target. find the probability that she hits the target exactly 3 times in 5 attempts-arrow_forwardDividing a JackpotA game between two players consists of tossing a coin. Player A gets a point if the coin shows heads, and player B gets a point if it shows tails. The first player to get six points wins an 8,000 jackpot. As it happens, the police raid the place when player A has five points and B has three points. After everyone has calmed down, how should the jackpot be divided between the two players? In other words, what is the probability of A winning and that of B winning if the game were to continue? The French Mathematician Pascal and Fermat corresponded about this problem, and both came to the same correct calculations though by very different reasonings. Their friend Roberval disagreed with both of them. He argued that player A has probability 34 of winning, because the game can end in the four ways H, TH, TTH, TTT and in three of these, A wins. Robervals reasoning was wrong. a Continue the game from the point at which it was interrupted, using either a coin or a modeling program. Perform the experiment 80 or more times, and estimate the probability that player A wins. bCalculate the probability that player A wins. Compare with your estimate from part a.arrow_forwardConditional probability If 40 of the population have completed college, and 85 of college graduates are registered to vote, what percent of the population are both college graduates and registered voters?arrow_forward
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning