The Solar System
The Solar System
10th Edition
ISBN: 9781337672252
Author: The Solar System
Publisher: Cengage
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 6, Problem 9P
To determine

The telescope can resolve a close double star better at blue wavelengths or red or not.

Blurred answer
Students have asked these similar questions
Imagine that you are observing a star and you find the wavelength of peak emission for the star to be 400 nm. What would the wavelength of peak emission be for a new star that has a surface temperature that is a quarter of the original star?  Using the same pair of stars from the first question, how does the luminosity (the energy output) of each star compare if we assume that both stars are the same size? (Please provide a specific factor or proportion) What type of radiation/light (from the electromagnetic spectrum) is each star emitting?  Now imagine that we determine that the wavelength of peak emission of the original star was determined to be bluer than it should be based on other observations. Would this indicate that the star is moving towards us or away from us relatively speaking through space? (Hint: think of the Doppler effect)
(a) The colour temperature can be determined from two magnitudes corresponding to two different wavelengths. Show that: 7000 K Te (B-V)+0.47 The wavelengths ofthe B and V bands are 440 nm and 548 nm, respectively, and we assume that B=V for stars of the spectral class A0, the colour temperature of which is about 15000 K°. (Take constant value - 0.73 and e-2.718).
Cas A SNR North Lobe Chandra ACIS image (M. Stage) region of spectrum-> 10* km/s (be sure to convert your answer to kilometers!) (Enter a positive value--if you get a negative answer ignore the minus sign.) 1000 100 Combine counts / Ang./ (0.964324 sq. arcsec) 10 1 0.1 Cas A Ms Spectrum from 4362.5 4458.5, region size 0.964324 sq. arcsec Silicon line werden der 5 10 20 Wavelength (Angstroms) The speed of the material ejected in a supernova can be measured by using the Doppler shift of the X-ray emission lines in its spectrum. The images above show real X ray data of the Cassiopeia A supernova remnant and a spectrum extracted from that data--you can see several emission lines including the silicon line near 6.6 angstroms (0.66 nm). If the emission line created by silicon normally has a wavelength of 0.6648 nm (nanometers), but is measured in the spectrum to have a wavelength of 0.6599 nm, how fast is the gas moving?
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY