University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 6.86P
The Grand Coulee Dam is 1270 m long and 170 m high. The electrical power output from generators at its base is approximately 2000 MW. How many cubic meters of water must flow from the top of the dam per second to produce this amount of power if 92% of the work done on the water by gravity is converted to electrical energy? (Each cubic meter of water has a mass of 1000 kg.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Grand Coulee Dam is 1270
m long and 170 m high. The
electrical power output from
generators at its base is
approximately 2000 MW. How
many cubic meters of water
must flow from the top of the
dam per second to produce this
amount of power if 92% of the
work done on the water by
gravity is converted to electrical
energy? (Each cubic meter of
water has a mass of 1000 kg.)
A full water tank in the shape of an inverted right circular cone is 8 m across the top and 4 m high. How much work is required to pump all the water over the top of the tank? (The density of water is
1000 kg/m3. Assume g = 9.8 m/s2 .)
A pump lifts water at a rate of 283 liters per second from a lake and force it into a tank 8 m above the level of the water at a pressure of 137 kPa. what is the power required in kW?
Chapter 6 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 6.1 - An electron moves in a straight line toward the...Ch. 6.2 - Rank the following bodies in order of their...Ch. 6.3 - In Example 5.20 (Section 5.4) we examined a...Ch. 6.4 - The air surrounding an airplane in flight exerts a...Ch. 6 - The sign of many physical quantities depends on...Ch. 6 - An elevator is hoisted by its cables at constant...Ch. 6 - A rope tied to a body is pulled, causing the body...Ch. 6 - If it takes total work W to give an object a speed...Ch. 6 - If there is a net nonzero force on a moving...Ch. 6 - In Example 5.5 (Section 5.1), how does the work...
Ch. 6 - In the conical pendulum of Example 5.20 (Section...Ch. 6 - For the cases shown in Fig. Q6.8, the object is...Ch. 6 - A force F is in the x-direction and has a...Ch. 6 - Does a cars kinetic energy change more when the...Ch. 6 - A falling brick has a mass of 1.5 kg and is moving...Ch. 6 - Can the total work done on an object during a...Ch. 6 - A net force acts on an object and accelerates it...Ch. 6 - A truck speeding down the highway has a lot of...Ch. 6 - You are holding a briefcase by the handle, with...Ch. 6 - When a book slides along a tabletop. the force of...Ch. 6 - Time yourself while running up a flight of steps,...Ch. 6 - Fractured Physics. Many terms from physics are...Ch. 6 - An advertisement for a portable electrical...Ch. 6 - A car speeds up while the engine delivers constant...Ch. 6 - Consider a graph of instantaneous power versus...Ch. 6 - A nonzero net force acts on an object. Is it...Ch. 6 - When a certain force is applied to an ideal...Ch. 6 - If work W is required to stretch a spring a...Ch. 6 - You push your physics book 1.50 m along a...Ch. 6 - Using a cable with a tension of 1350 N, a tow...Ch. 6 - A factory worker pushes a 30.0-kg crate a distance...Ch. 6 - Suppose the worker in Exercise 6.3 pushes downward...Ch. 6 - A 75.0-kg painter climbs a ladder that is 2.75 m...Ch. 6 - Two tugboats pull a disabled supertanker. Each tug...Ch. 6 - Two blocks are connected by a very light string...Ch. 6 - A loaded grocery cart is rolling across a parking...Ch. 6 - A 0.800-kg ball is tied to the end of a string...Ch. 6 - A 12.0-kg package in a mail-sorting room slides...Ch. 6 - A 128.0-N carton is pulled up a frictionless...Ch. 6 - A boxed 10.0-kg computer monitor is drugged by...Ch. 6 - A large crate sits on the floor of a warehouse....Ch. 6 - You apply a constant force F=(68.0N)i+(36.0N)j to...Ch. 6 - You are holding a briefcase by the handle, with...Ch. 6 - When a book slides along a tabletop, the force of...Ch. 6 - Time yourself while running up a flight of steps,...Ch. 6 - Fractured Physics. Many terms from physics are...Ch. 6 - Meteor Crater. About 50,000 years ago, a meteor...Ch. 6 - A 4.80-kg watermelon is dropped from rest from the...Ch. 6 - Use the work-energy theorem to solve each of these...Ch. 6 - Use the work-energy theorem to solve each of these...Ch. 6 - You are a member of an Alpine Rescue Team. You...Ch. 6 - You throw a 3.00-N rock vertically into the air...Ch. 6 - A sled with mass 12.00 kg moves in a straight line...Ch. 6 - A mass m slides down a smooth inclined plane from...Ch. 6 - A 12-pack of Omni-Cola (mass 4.30 kg) is initially...Ch. 6 - A soccer ball with mass 0.420 kg is initially...Ch. 6 - A little red wagon with mass 7.00 kg moves in a...Ch. 6 - A block of ice with mass 2.00 kg slides 1.35 m...Ch. 6 - Stopping Distance. A car is traveling on a level...Ch. 6 - A 30.0-kg crate is initially moving with a...Ch. 6 - BIO Heart Repair. A surgeon is using material from...Ch. 6 - To stretch a spring 3.00 cm from its unstretched...Ch. 6 - Three identical 8.50-kg masses are hung by three...Ch. 6 - A child applies a force F parallel to the x-axis...Ch. 6 - Suppose the sled in Exercise 6.36 is initially at...Ch. 6 - A spring of force constant 300.0 N/m and...Ch. 6 - A 6.0-kg box moving at 3.0 m/s on a horizontal,...Ch. 6 - Leg Presses. As part of your daily workout, you...Ch. 6 - (a) In Example 6.7 (Section 6.3) it was calculated...Ch. 6 - A 4.00-kg block of ice is placed against a...Ch. 6 - A force F is applied to a 2.0-kg, radio-controlled...Ch. 6 - Suppose the 2.0-kg model car in Exercise 6.43 is...Ch. 6 - Prob. 6.45ECh. 6 - Half or a Spring. (a) Suppose you cut a massless...Ch. 6 - A small glider is placed against a compressed...Ch. 6 - An ingenious bricklayer builds a device for...Ch. 6 - CALC A force in the +x-direction with magnitude...Ch. 6 - A crate on a motorized cart starts from rest and...Ch. 6 - How many joules of energy does a 100-watt light...Ch. 6 - BIO Should You Walk or Run? It is 5.0 km from your...Ch. 6 - Magnetar. Oil December 27, 2004, astronomers...Ch. 6 - A 20.0-kg rock is sliding on a rough, horizontal...Ch. 6 - A tandem (two-person) bicycle team must overcome a...Ch. 6 - When its 75-kW (100-hp) engine is generating full...Ch. 6 - Working Like a Horse. Your job is to lift 30-kg...Ch. 6 - An elevator has mass 600 kg, not including...Ch. 6 - A ski tow operates on a 15.0 slope of length 300...Ch. 6 - You are applying a constant horizontal force F =...Ch. 6 - BIO While hovering, a typical flying insect...Ch. 6 - CALC A balky cow is leaving the barn as you try...Ch. 6 - A luggage handler pulls a 20.0-kg suitcase up a...Ch. 6 - Chin-ups. While doing a chin-up, a man lifts his...Ch. 6 - Consider the blocks in Exercise 6.7 as they move...Ch. 6 - A 5.00-kg package slides 2.80 m down a long ramp...Ch. 6 - CP BIO Whiplash Injuries. When a car is hit from...Ch. 6 - CALC A net force along the x-axis that has...Ch. 6 - CALC Varying Coefficient of Friction. A box is...Ch. 6 - CALC Consider a spring that does not obey Hookes...Ch. 6 - CP A small block with Figure P6.71 a mass of...Ch. 6 - CALC Proton Bombardment. A proton with mass 1.67 ...Ch. 6 - You are asked to design spring bumpers for the...Ch. 6 - You and your bicycle have combined mass 80.0 kg....Ch. 6 - A 2.50-kg textbook is forced against a horizontal...Ch. 6 - The spring of a spring gun has force constant k =...Ch. 6 - One end of a horizontal spring with force constant...Ch. 6 - One end of a horizontal spring with force constant...Ch. 6 - A 5.00-kg block is moving at 0 = 6.00 m/s along a...Ch. 6 - A physics professor is pushed up a ramp inclined...Ch. 6 - Consider the system shown in Fig. P6.81. The rope...Ch. 6 - Consider the system shown in Fig. P6.81. The rope...Ch. 6 - On an essentially frictionless, horizontal ice...Ch. 6 - BIO All birds, independent of their size, must...Ch. 6 - A pump is required to lift 800 kg of water (about...Ch. 6 - The Grand Coulee Dam is 1270 m long and 170 m...Ch. 6 - A physics student spends part of her day walking...Ch. 6 - CALC An object has several forces acting on it....Ch. 6 - BIO Power of the Human Heart. The human heart is a...Ch. 6 - DATA Figure P6.90 shows the results of measuring...Ch. 6 - DATA In a physics lab experiment, one end of a...Ch. 6 - DATA For a physics lab experiment, four classmates...Ch. 6 - CALC A Spring with Mass. We usually ignore the...Ch. 6 - CALC An airplane in flight is subject to an air...Ch. 6 - BIO ENERGY OF LOCOMOTION. On flat ground, a 70-kg...Ch. 6 - BIO ENERGY OF LOCOMOTION. On flat ground, a 70-kg...Ch. 6 - BIO ENERGY OF LOCOMOTION. On flat ground, a 70-kg...
Additional Science Textbook Solutions
Find more solutions based on key concepts
37. Two common metric units of volume are ______ and ______.
Applied Physics (11th Edition)
62. bio || A 65.0 kg parachutist falling vertically at a speed of 6.30 m/s hits the ground, which brings him to...
College Physics (10th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
The Cosmic Perspective Fundamentals (2nd Edition)
9. Blocks with masses of 1 kg, 2 kg, and 3 kg are lined up in a row on a frictionless table. All three are push...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
10. If an iron nucleus split in two, its fission fragments would have
more mass per nucleon.
less mass per nucl...
Conceptual Physical Science (6th Edition)
Choose the best answer to each of the following. Explain your reasoning. What is the basic definition of a blac...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the energy in fusion bombs were used to supply the energy needs of the world, how many of the 9-megaton variety would be needed for a year’s supply of energy (using data from Equation 8.7)? U(x)=12kx2=const.arrow_forwardWater falls over a dam of height h with a mass flow rate of Iv, in units of kilograms per second. (a) Show that the power available from the water is P = Ivgh where g is the free-fall acceleration. (b) Each hydroelectric unit at the Grand Coulee Dam takes in water at a rate of 8.50 105 kg/s from a height of 87.0 m. The power developed by the falling water is converted to electric power with an efficiency of 85.0%. How much electric power does each hydroelectric unit produce?arrow_forwardWhen the Glen Canyon hydroelectric power plant in Arizona is running at capacity, 690 m3 of water flows through the dam each second. The water is released 220 m below the top of the reservoir. If the generators that the dam employs are 90% efficient, what is the maximum possible electric power output?arrow_forward
- A cylindrical water tank 6 meters high with a radius of 2 meters is buried so that the top of the tank is 1 meter below ground level (see figure). How much work is done in pumping a full tank of water up to the ground level? (the water weighs 9800 Newtons per cubic meter.)arrow_forwardOf waterfalls with a height of more than 50 m, Niagara Falls in Canada has the highest flow rate of any waterfall in the world. The total average flow rate of the falls is 2.80 × 10³ m³/s and its average height is 52.0 m (Niagara Falls Live, 2017). Given that the density of water is 1.00 × 10³ kg/m³, calculate the average power output of Niagara Falls. average power output: Warrow_forwardAn aquarium 12m long, 2m wide, and 7m deep is full of water. The density of water is 1000kg/m^3 and the force of gravity is 9.8m/s^2 a) Find the work needed to pump all of the water out of the aquarium.Work = Joules. b) Find the work needed to pump half of the water out of the aquarium.Work = Joules.arrow_forward
- A bucket full of sand has a mass of 20 kg (including the bucket and the sand). The bucket is to be lifted to the top of a building 15 meters tall by a rope of negligible weight. However, the bucket has a hole in it, and leaks 0.1 kgs of sand each meter it is lifted. Find the work done lifting the bucket to the top of the building. Hint: Force = (mass)(acceleration). For this problem, the force will be a product where a m 9.8 82 Joulesarrow_forwardA trough is 5 meters long, 1.5 meters wide, and 1 meters deep. The vertical cross-section of the trough parallel to an end is shaped like an isoceles triangle (with height 1 meters, and base, on top, of length 1.5 meters). The kg trough is full of water (density 1000- ). Find the amount of work in m3 joules required to empty the trough by pumping the water over the top. (Note: Use g = 9.8 as the acceleration due to gravity.) s2 5m 1.5m 1marrow_forwardA trough is 4 m long, 5 m wide, and 2 m deep. The vertical cross-section of the trough parallel to an end is shaped like an isosceles triangle. The trough is full of water. 5 m 4 m 2 m The mass density of water is 1000 . Use g 9.8 m as the acceleration constant due to gravity. Find the amount of work (in joules) required to empty the trough by pumping the water to the top of the tank.arrow_forward
- Water is pumped from a river with a depth of 80m to a reservoir on the surface at a rate of 10m^3/hr (cubic meter per hour). What is the minimum power in watts required in pumping the water up?arrow_forwardA bucket begins holding 25 kgs of sand. The bucket is to be lifted to the top of a 20 meter tall building by a rope with density 0.3 kg/m. However, the bucket has a hole in it, and leaks 0.3 kgs of sand each meter it is lifted. Find the work done lifting the bucket and rope to the top of the building. Use 9.8 m/s² for gravity.arrow_forwardA pump can discharge about 137.6 liters of water in one day. This work done by the pump is equal to the work required to lift this amount of water a height equal to that of a 2-meter person. The density of water is 1 kg/L. What is the pump’s power in watts? The pump’s power is ___ watts.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY