University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 6.81P
Consider the system shown in Fig. P6.81. The rope and pulley have negligible mass, and the pulley is friction- less. Initially the 6.00-kg block is moving downward and the 8.00-kg block is moving to the right, both with a speed of 0.900 m/s. The blocks come to rest after moving 2.00 m. Use the work-energy theorem to calculate the coefficient of kinetic friction between the 8.00-kg block and the tabletop.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 6.1 - An electron moves in a straight line toward the...Ch. 6.2 - Rank the following bodies in order of their...Ch. 6.3 - In Example 5.20 (Section 5.4) we examined a...Ch. 6.4 - The air surrounding an airplane in flight exerts a...Ch. 6 - The sign of many physical quantities depends on...Ch. 6 - An elevator is hoisted by its cables at constant...Ch. 6 - A rope tied to a body is pulled, causing the body...Ch. 6 - If it takes total work W to give an object a speed...Ch. 6 - If there is a net nonzero force on a moving...Ch. 6 - In Example 5.5 (Section 5.1), how does the work...
Ch. 6 - In the conical pendulum of Example 5.20 (Section...Ch. 6 - For the cases shown in Fig. Q6.8, the object is...Ch. 6 - A force F is in the x-direction and has a...Ch. 6 - Does a cars kinetic energy change more when the...Ch. 6 - A falling brick has a mass of 1.5 kg and is moving...Ch. 6 - Can the total work done on an object during a...Ch. 6 - A net force acts on an object and accelerates it...Ch. 6 - A truck speeding down the highway has a lot of...Ch. 6 - You are holding a briefcase by the handle, with...Ch. 6 - When a book slides along a tabletop. the force of...Ch. 6 - Time yourself while running up a flight of steps,...Ch. 6 - Fractured Physics. Many terms from physics are...Ch. 6 - An advertisement for a portable electrical...Ch. 6 - A car speeds up while the engine delivers constant...Ch. 6 - Consider a graph of instantaneous power versus...Ch. 6 - A nonzero net force acts on an object. Is it...Ch. 6 - When a certain force is applied to an ideal...Ch. 6 - If work W is required to stretch a spring a...Ch. 6 - You push your physics book 1.50 m along a...Ch. 6 - Using a cable with a tension of 1350 N, a tow...Ch. 6 - A factory worker pushes a 30.0-kg crate a distance...Ch. 6 - Suppose the worker in Exercise 6.3 pushes downward...Ch. 6 - A 75.0-kg painter climbs a ladder that is 2.75 m...Ch. 6 - Two tugboats pull a disabled supertanker. Each tug...Ch. 6 - Two blocks are connected by a very light string...Ch. 6 - A loaded grocery cart is rolling across a parking...Ch. 6 - A 0.800-kg ball is tied to the end of a string...Ch. 6 - A 12.0-kg package in a mail-sorting room slides...Ch. 6 - A 128.0-N carton is pulled up a frictionless...Ch. 6 - A boxed 10.0-kg computer monitor is drugged by...Ch. 6 - A large crate sits on the floor of a warehouse....Ch. 6 - You apply a constant force F=(68.0N)i+(36.0N)j to...Ch. 6 - You are holding a briefcase by the handle, with...Ch. 6 - When a book slides along a tabletop, the force of...Ch. 6 - Time yourself while running up a flight of steps,...Ch. 6 - Fractured Physics. Many terms from physics are...Ch. 6 - Meteor Crater. About 50,000 years ago, a meteor...Ch. 6 - A 4.80-kg watermelon is dropped from rest from the...Ch. 6 - Use the work-energy theorem to solve each of these...Ch. 6 - Use the work-energy theorem to solve each of these...Ch. 6 - You are a member of an Alpine Rescue Team. You...Ch. 6 - You throw a 3.00-N rock vertically into the air...Ch. 6 - A sled with mass 12.00 kg moves in a straight line...Ch. 6 - A mass m slides down a smooth inclined plane from...Ch. 6 - A 12-pack of Omni-Cola (mass 4.30 kg) is initially...Ch. 6 - A soccer ball with mass 0.420 kg is initially...Ch. 6 - A little red wagon with mass 7.00 kg moves in a...Ch. 6 - A block of ice with mass 2.00 kg slides 1.35 m...Ch. 6 - Stopping Distance. A car is traveling on a level...Ch. 6 - A 30.0-kg crate is initially moving with a...Ch. 6 - BIO Heart Repair. A surgeon is using material from...Ch. 6 - To stretch a spring 3.00 cm from its unstretched...Ch. 6 - Three identical 8.50-kg masses are hung by three...Ch. 6 - A child applies a force F parallel to the x-axis...Ch. 6 - Suppose the sled in Exercise 6.36 is initially at...Ch. 6 - A spring of force constant 300.0 N/m and...Ch. 6 - A 6.0-kg box moving at 3.0 m/s on a horizontal,...Ch. 6 - Leg Presses. As part of your daily workout, you...Ch. 6 - (a) In Example 6.7 (Section 6.3) it was calculated...Ch. 6 - A 4.00-kg block of ice is placed against a...Ch. 6 - A force F is applied to a 2.0-kg, radio-controlled...Ch. 6 - Suppose the 2.0-kg model car in Exercise 6.43 is...Ch. 6 - Prob. 6.45ECh. 6 - Half or a Spring. (a) Suppose you cut a massless...Ch. 6 - A small glider is placed against a compressed...Ch. 6 - An ingenious bricklayer builds a device for...Ch. 6 - CALC A force in the +x-direction with magnitude...Ch. 6 - A crate on a motorized cart starts from rest and...Ch. 6 - How many joules of energy does a 100-watt light...Ch. 6 - BIO Should You Walk or Run? It is 5.0 km from your...Ch. 6 - Magnetar. Oil December 27, 2004, astronomers...Ch. 6 - A 20.0-kg rock is sliding on a rough, horizontal...Ch. 6 - A tandem (two-person) bicycle team must overcome a...Ch. 6 - When its 75-kW (100-hp) engine is generating full...Ch. 6 - Working Like a Horse. Your job is to lift 30-kg...Ch. 6 - An elevator has mass 600 kg, not including...Ch. 6 - A ski tow operates on a 15.0 slope of length 300...Ch. 6 - You are applying a constant horizontal force F =...Ch. 6 - BIO While hovering, a typical flying insect...Ch. 6 - CALC A balky cow is leaving the barn as you try...Ch. 6 - A luggage handler pulls a 20.0-kg suitcase up a...Ch. 6 - Chin-ups. While doing a chin-up, a man lifts his...Ch. 6 - Consider the blocks in Exercise 6.7 as they move...Ch. 6 - A 5.00-kg package slides 2.80 m down a long ramp...Ch. 6 - CP BIO Whiplash Injuries. When a car is hit from...Ch. 6 - CALC A net force along the x-axis that has...Ch. 6 - CALC Varying Coefficient of Friction. A box is...Ch. 6 - CALC Consider a spring that does not obey Hookes...Ch. 6 - CP A small block with Figure P6.71 a mass of...Ch. 6 - CALC Proton Bombardment. A proton with mass 1.67 ...Ch. 6 - You are asked to design spring bumpers for the...Ch. 6 - You and your bicycle have combined mass 80.0 kg....Ch. 6 - A 2.50-kg textbook is forced against a horizontal...Ch. 6 - The spring of a spring gun has force constant k =...Ch. 6 - One end of a horizontal spring with force constant...Ch. 6 - One end of a horizontal spring with force constant...Ch. 6 - A 5.00-kg block is moving at 0 = 6.00 m/s along a...Ch. 6 - A physics professor is pushed up a ramp inclined...Ch. 6 - Consider the system shown in Fig. P6.81. The rope...Ch. 6 - Consider the system shown in Fig. P6.81. The rope...Ch. 6 - On an essentially frictionless, horizontal ice...Ch. 6 - BIO All birds, independent of their size, must...Ch. 6 - A pump is required to lift 800 kg of water (about...Ch. 6 - The Grand Coulee Dam is 1270 m long and 170 m...Ch. 6 - A physics student spends part of her day walking...Ch. 6 - CALC An object has several forces acting on it....Ch. 6 - BIO Power of the Human Heart. The human heart is a...Ch. 6 - DATA Figure P6.90 shows the results of measuring...Ch. 6 - DATA In a physics lab experiment, one end of a...Ch. 6 - DATA For a physics lab experiment, four classmates...Ch. 6 - CALC A Spring with Mass. We usually ignore the...Ch. 6 - CALC An airplane in flight is subject to an air...Ch. 6 - BIO ENERGY OF LOCOMOTION. On flat ground, a 70-kg...Ch. 6 - BIO ENERGY OF LOCOMOTION. On flat ground, a 70-kg...Ch. 6 - BIO ENERGY OF LOCOMOTION. On flat ground, a 70-kg...
Additional Science Textbook Solutions
Find more solutions based on key concepts
8. A farsighted person has a near point of 50 cm rather than the normal 25 cm. What strength lens, in diopters,...
College Physics: A Strategic Approach (4th Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
31. Your forehead can withstand a force of about 6.0 kN before fracturing, while your cheekbone can withstand o...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
Choose the best answer to etch of the following. Explain your reasoning. Which of these stars has the largest r...
Cosmic Perspective Fundamentals
The speed of the person sitting on the chair relative to the chair and relative to Earth.
Conceptual Physics (12th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- As a young man, Tarzan climbed up a vine to reach his tree house. As he got older, he decided to build and use a staircase instead. Since the work of the gravitational force mg is path Independent, what did the King of the Apes gain in using stairs?arrow_forwardA particle moves in one dimension under the action of a conservative force. The potential energy of the system is given by the graph in Figure P8.55. Suppose the particle is given a total energy E, which is shown as a horizontal line on the graph. a. Sketch bar charts of the kinetic and potential energies at points x = 0, x = x1, and x = x2. b. At which location is the particle moving the fastest? c. What can be said about the speed of the particle at x = x3? FIGURE P8.55arrow_forwardA block of mass m = 2.50 kg is pushed a distance d = 2.20 m along a frictionless, horizontal table by a constant applied force of magnitude F = 16.0 N directed at an angle = 25.0 below the horizontal as shown in Figure P6.3. Determine the work done on the block by (a) the applied force, (b) the normal force exerted by the table, (c) the gravitational force, and (d) the net force on the block. Figure P6.3arrow_forward
- As shown in Figure P7.20, a green bead of mass 25 g slides along a straight wire. The length of the wire from point to point is 0.600 m, and point is 0.200 in higher than point . A constant friction force of magnitude 0.025 0 N acts on the bead. (a) If the bead is released from rest at point , what is its speed at point ? (b) A red bead of mass 25 g slides along a curved wire, subject to a friction force with the same constant magnitude as that on the green bead. If the green and red beads are released simultaneously from rest at point , which bead reaches point first? Explain. Figure P7.20arrow_forwardA block is placed on top of a vertical spring, and the spring compresses. Figure P8.24 depicts a moment in time when the spring is compressed by an amount h. a. To calculate the change in the gravitational and elastic potential energies, what must be included in the system? b. Find an expression for the change in the systems potential energy in terms of the parameters shown in Figure P8.24. c. If m = 0.865 kg and k = 125 N/m, find the change in the systems potential energy when the blocks displacement is h = 0.0650 m, relative to its initial position. FIGURE P8.24arrow_forwardSuppose the ski patrol lowers a rescue sled and victim, having a total mass of 90.0 kg, down a 60.0° slope at constant speed, as shown in Figure 7.37. The coefficient of friction between the sled and the snow is 0.100. (a) How much work is done by friction as the sled moves 30.0 m along the hill? (b) How much work is done by the rope on the sled in this distance? (c) What is the work done by the gravitational force on the sled? (d) What is the total work done?arrow_forward
- Consider a particle on which a force acts that depends on the position of the particle. This force is given by . Find the work done by this force when the particle moves from the origin to a point 5 meters to the right on the x-axis.arrow_forwardA block of mass 0.500 kg is pushed against a horizontal spring of negligible mass until the spring is compressed a distance x (Fig. P7.79). The force constant of the spring is 450 N/m. When it is released, the block travels along a frictionless, horizontal surface to point , the bottom of a vertical circular track of radius R = 1.00 m, and continues to move up the track. The blocks speed at the bottom of the track is = 12.0 m/s, and the block experiences an average friction force of 7.00 N while sliding up the track. (a) What is x? (b) If the block were to reach the top of the track, what would be its speed at that point? (c) Does the block actually reach the top of the track, or does it fall off before reaching the top?arrow_forwardGive an example of a situation in which there is a force and a displacement, but the force does no work. Explain why it does no work.arrow_forward
- The force acting on a particle varies as shown in Figure P6.14. Find the work done by the force on the particle as it moves (a) from x = 0 to x = 8.00 m, (b) from x = 8.00 m to x= 10.0 m, and (c) from x = 0 to x = 10.0 m.arrow_forwardA nonconstant force is exerted on a particle as it moves in the positive direction along the x axis. Figure P9.26 shows a graph of this force Fx versus the particles position x. Find the work done by this force on the particle as the particle moves as follows. a. From xi = 0 to xf = 10.0 m b. From xi = 10.0 to xf = 20.0 m c. From xi = 0 to xf = 20.0 m FIGURE P9.26 Problems 26 and 27.arrow_forwardA student expends 7.5 W of power in lifting a textbook 0.50 m in 1.0 s with a constant velocity. (a) How much work is done, and (b) how much does the book weigh (in newtons)? The answers to Confidence Exercises may be found at the back of the book.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY