FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
11th Edition
ISBN: 9781119459132
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 66P
GO In Fig. 6-50, block 1 of mass m1 = 2.0 kg and block 2 of mass m2 = 3.0 kg are connected by a string of negligible mass and are initially held in place. Block 2 is on a frictionless surface tilted at θ = 30°. The coefficient of kinetic friction between block 1 and the horizontal surface is 0.25. The pulley has negligible mass and friction. Once they are released, the blocks move. What then is the tension in the string?
Figure 6-50 Problem 66.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two blocks, A and B (with mass 50 kg and 100 kg, respectively), are connected by a cord, as
shown in Figure. The pulley has a negligible mass. The coefficient of kinetic friction between
block A and the incline is = 0.11. The bloc B is maintained at rest at a height of 4 m, and the
angle of the incline is 37°. The support of bloc B is removed and B starts to go down.
woCalculate the velocity of the bloc B as it hits the ground.
50 kg
377
100 kg
Time left 0:20:26
In the figure, a force of magnitude 11.4 N is applied to a block of mass m2= 1.3 kg. The force is directed
up an incline plane with an angle of 33.1°. The box is connected by a cord to another block of mass m1=
2.7 kg on the floor. The floor, plane, and pulley are frictionless, and the masses of the pulley and cord are
negligible. What is the tension in the cord in N?
M2
m1
Answer:
ENG
f8
4t
144
f3
f4
fs
f6
米
&
4.
6.
7
01
00
96
30
%24
%23
a block of mass m is initially at rest at the highest point of an inclined plane, which has a height of 6.8 m and has an angle of 0=16 degrees with respect to the horizontal. After it has been released, you perceived it to be moving at v=0.55 m/s a distance d after the end of the inclined plane as shown. The coefficient of kinetic friction between the block and the plane i sup=0.1 and the coefficient of friction on the horizontal surface its ur=0.2.
a)what is the speed of the block, in meters per second, just after it leaves the inclined plane?
b)Find the distance, d, in meters.
Chapter 6 Solutions
FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
Ch. 6 - In Fig. 6-12, if the box is stationary and the...Ch. 6 - Prob. 2QCh. 6 - In Fig. 6-13, horizontal force F1 of magnitude 10...Ch. 6 - In three experiments, three different horizontal...Ch. 6 - If you press an apple crate against a wall so hard...Ch. 6 - In Fig. 6-14, a block of mass m is held stationary...Ch. 6 - Reconsider Question 6 but with the force F now...Ch. 6 - In Fig. 6-15, a horizontal force of 100 N is to be...Ch. 6 - Prob. 9QCh. 6 - Prob. 10Q
Ch. 6 - A person riding a Ferris wheel moves through...Ch. 6 - During a routine flight in 1956, test pilot Tom...Ch. 6 - A box is on a ramp that is at angle to the...Ch. 6 - The floor of a railroad flatcar is loaded with...Ch. 6 - In a pickup game of dorm shuffleboard, students...Ch. 6 - SSM WWW A bedroom bureau with a mass of 45 kg,...Ch. 6 - A slide-loving pig slides down a certain 35 slide...Ch. 6 - GO A 2.5 kg block is initially at rest on a...Ch. 6 - A baseball player with mass m 79 kg, sliding into...Ch. 6 - SSM ILW A person pushes horizontally with a force...Ch. 6 - The mysterious sliding stones. Along the remote...Ch. 6 - GO A 3.5 kg block is pushed along a horizontal...Ch. 6 - Figure 6-20 shows an initially stationary block of...Ch. 6 - SSM A 68 kg crate is dragged across a floor by...Ch. 6 - In about 1915, Henry Sincosky of Philadelphia...Ch. 6 - A worker pushes horizontally on a 35 kg crate with...Ch. 6 - Figure 6-22 shows the cross section of a road cut...Ch. 6 - The coefficient of static friction between Teflon...Ch. 6 - A loaded penguin sled weighing 80 N rests on a...Ch. 6 - In Fig. 6-24, a force P acts on a block weighing...Ch. 6 - GO You testify as an expert witness in a case...Ch. 6 - A 12 N horizontal force F pushes a block weighing...Ch. 6 - GO In Fig. 6-27, a box of Cheerios mass mC = 1.0...Ch. 6 - An initially stationary box of sand is to be...Ch. 6 - GO In Fig. 6-23, a sled is held on an inclined...Ch. 6 - When the three blocks in Fig. 6-29 are released...Ch. 6 - A 4.10 kg block is pushed along a floor by a...Ch. 6 - SSM WWW Block B in Fig. 6-31 weighs 711 N. The...Ch. 6 - GO Figure 6-32 shows three crates being pushed...Ch. 6 - GO Body A in Fig. 6-33 weighs 102 N, and body B...Ch. 6 - In Fig. 6-33, two blocks are connected over a...Ch. 6 - GO In Fig. 6-34, blocks A and B have weights of 44...Ch. 6 - A toy chest and its contents have a combined...Ch. 6 - SSM Two blocks, of weights 3.6 N and 7.2 N, are...Ch. 6 - GO A block is pushed across a floor by a constant...Ch. 6 - SSM A 1000 kg boat is traveling at 90 km/h when...Ch. 6 - GO In Fig. 6-37, a slab of mass m1= 40 kg rests on...Ch. 6 - ILW The two blocks m = 16 kg and M = 88 kg in Fig....Ch. 6 - The terminal speed of a sky diver is 160 km/h in...Ch. 6 - Continuation of Problem 8. Now assume that Eq....Ch. 6 - Assume Eq. 6-14 gives the drag force on a pilot...Ch. 6 - Calculate the ratio of the drag force on a jet...Ch. 6 - In downhill speed skiing a skier is retarded by...Ch. 6 - A cat dozes on a stationary merry-go-round in an...Ch. 6 - Suppose the coefficient of static friction between...Ch. 6 - ILW What is the smallest radius of an unbanked...Ch. 6 - During an Olympic bobsled run, the Jamaican team...Ch. 6 - SSM ILW A student of weight 667 N rides a steadily...Ch. 6 - A police officer in hot pursuit drives her car...Ch. 6 - A circular-motion addict of mass 80 kg rides a...Ch. 6 - A roller-coaster car at an amusement park has a...Ch. 6 - GO In Fig. 6-39, a car is driven at constant speed...Ch. 6 - An 85.0 kg passenger is made to move along a...Ch. 6 - SSM WWW An airplane is flying in a horizontal...Ch. 6 - An amusement park ride consists of a car moving in...Ch. 6 - An old streetcar rounds a flat corner of radius...Ch. 6 - In designing circular rides for amusement parks,...Ch. 6 - A bolt is threaded onto one end of a thin...Ch. 6 - GO A banked circular highway curve is designed for...Ch. 6 - GO A puck of mass m = 1.50 kg slides in a circle...Ch. 6 - Brake or turn? Figure 6- 44 depicts an overhead...Ch. 6 - SSM ILW In Fig. 6-45, a 1.34 kg ball is connected...Ch. 6 - GO In Fig. 6-46, a box of ant aunts total mass m1...Ch. 6 - SSM A block of mass mt = 4.0 kg is put on top of a...Ch. 6 - A 5.00 kg stone is rubbed across the horizontal...Ch. 6 - In Fig. 6-49, a 49 kg rock climber is climbing a...Ch. 6 - A high-speed railway car goes around a flat,...Ch. 6 - Continuation of Problems 8 and 37. Another...Ch. 6 - GO In Fig. 6-50, block 1 of mass m1 = 2.0 kg and...Ch. 6 - In Fig. 6-51, a crate slides down an inclined...Ch. 6 - Engineering a highway curve. If a car goes through...Ch. 6 - A student, crazed by final exams, uses a force P...Ch. 6 - GO Figure 6-53 shows a conical pendulum, in which...Ch. 6 - An 8.00 kg block of steel is at rest on a...Ch. 6 - A box of canned goods slides down a ramp from...Ch. 6 - In Fig. 6-54, the coefficient of kinetic friction...Ch. 6 - A 110 g hockey puck sent sliding over ice is...Ch. 6 - A locomotive accelerates a 25-car train along a...Ch. 6 - A house is built on the top of a hill with a...Ch. 6 - What is the terminal speed of a 6.00 kg spherical...Ch. 6 - A student wants to determine the coefficients of...Ch. 6 - SSM Block A in Fig. 6-56 has mass mA = 4.0 kg, and...Ch. 6 - Calculate the magnitude of the drag force on a...Ch. 6 - SSM A bicyclist travels in a circle of radius 25.0...Ch. 6 - In Fig. 6-57, a stuntman drives a car without...Ch. 6 - You must push a crate across a floor to a docking...Ch. 6 - In Fig. 6-58, force F is applied to a crate of...Ch. 6 - In the early afternoon, a car is parked on a...Ch. 6 - A sling-thrower puts a stone 0.250 kg in the...Ch. 6 - SSM A car weighing 10.7 kN and traveling at 13.4...Ch. 6 - In Fig. 6-59, block 1 of mass m1 = 2.0 kg and...Ch. 6 - SSM A filing cabinet weighing 556 N rests on the...Ch. 6 - In Fig. 6-60, a block weighing 22 N is held at...Ch. 6 - Prob. 91PCh. 6 - A circular curve of highway is designed for...Ch. 6 - A 1.5 kg box is initially at rest on a horizontal...Ch. 6 - A child weighing 140 N sits at rest at the top of...Ch. 6 - In Fig. 6-61 a fastidious worker pushes directly...Ch. 6 - A child places a picnic basket on the outer rim of...Ch. 6 - SSM A warehouse worker exerts a constant...Ch. 6 - In Fig. 6-62, a 5.0 kg block is sent sliding up a...Ch. 6 - An 11 kg block of steel is at rest on a horizontal...Ch. 6 - A ski that is placed on snow will stick to the...Ch. 6 - Playing near a road construction site, a child...Ch. 6 - A 100 N force, directed at an angle above a...Ch. 6 - A certain string can withstand a maximum tension...Ch. 6 - A four-person bobsled total mass = 630 kg comes...Ch. 6 - As a 40 N block slides down a plane that is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
To catch speeders, a police radar gun detects the beat frequency between the signal it emits and that which ref...
Modern Physics
Explain all answer clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desig...
Cosmic Perspective Fundamentals
The reaction force.
Conceptual Physics (12th Edition)
Is the magnitude of the net force on +qgreater than, less than, or equal to the magnitude of FP ? Explain.
Tutorials in Introductory Physics
Can a vapor exist below the triple point temperature?
EBK FUNDAMENTALS OF THERMODYNAMICS, ENH
Youre a marine biologist concerned with the effect of sonic booms on plankton, and you need to estimate the alt...
Essential University Physics: Volume 1 (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A car of mass m = 1100 kg is traveling down a θ = 14 degree incline. When the car's speed is v0 = 13 m/s, a mechanical failure causes all four of its brakes to lock. The coefficient of kinetic friction between the tires and road is μk = 0.45. Calculate the distance the car travels down the hill L in meters until it comes to a stop at the endarrow_forwardTwo packages slide down a 20 degree ramp from rest a distance of d=6.6 m along the ramp. Package A has a mass of 5.0 kg and a coefficient of kinetic friction 0.20 between it and the ramp. Package B behind package A has a mass of 10 kg and a coefficient of kinetic friction 0.15 between it and the ramp. How long does it take package A to reack the bottom?arrow_forwardA man pushing a crate of mass m = 92.0 kg at a speed of v = 0.875 m/s encounters a rough horizontal surface of length { = 0.65 m as in the figure below. If the coefficient of kinetic friction between the crate and rough surface is 0.359 and he exerts a constant horizontal force of 293 N on the crate. (a) Find the magnitude and direction of the net force on the crate while it is on the rough surface. magnitude direction ---Select--- (b) Find the net work done on the crate while it is on the rough surface. J (c) Find the speed of the crate when it reaches the end of the rough surface. m/sarrow_forward
- A particle is subjected to the action of two forces : F1 = 41+ 3 + 6 k [ kN ] and F2 = 51-61 -5k [ kN ] . The coordinate direction angle of the resultant force with the X - axis isarrow_forwardA 1.5-kg block initially at rest at the top of a 3-m incline with a slope of 30° begins to slide down the incline. The upper half of the incline is frictionless, while the lower half is rough, with a coefficient of kinetic friction μk = 0.3. (a) How fast is the block moving midway along the incline, before entering the rough section? (b) How fast is the block moving at the bottom of the incline?arrow_forwardAn object is on earth with a mass of 10.0 kg at the top of a frictionless inclined plane of length 8.00 m and an angle of inclination 30.0° with the horizontal, and with an initial velocity down the plane of 2.0 m/s. The object slides from this position and it stops at a distance d from the bottom of the inclined plane along a rough horizontal surface with friction, as shown. The coefficient of kinetic friction for the horizontal surface is 0.400. (a) What is the speed of the object at the bottom of the inclined plane? (b) At what horizontal distance d from the bottom of the inclined plane will this object stop? Use Work and Energy Principles to solve. Do not use Newton’s laws for constant acceleration: Zero credit if you do not use conservation of energy concepts.arrow_forward
- An object is on earth with a mass of 10.0 kg at the top of a frictionless inclined plane of length 8.00 m and an angle of inclination 30.0° with the horizontal, and with an initial velocity down the plane of 2.0 m/s. The object slides from this position and it stops at a distance d from the bottom of the inclined plane along a rough horizontal surface with friction, as shown. The coefficient of kinetic friction for the horizontal surface is 0.400. (a) What is the speed of the object at the bottom of the inclined plane? (b) At what horizontal distance d from the bottom of the inclined plane will this object stop? Use Newton’s Laws for constant acceleration and Friction Forces to solve. Do not use Conservation of Energy concepts: zero credit if you use Conservation of Energy.arrow_forwardA crate of mass m is initially at rest at the highest point of an inclined plane which has a height of 5.28 m and makes an angle of A = 17.2° with respect to the horizontal. After it has been released, it is found to be traveling at v = 0.29 m/s a distance dafter the end of the inclined plane, as shown. The coefficient of kinetic friction between the crate and the plane is tp = 0.1, and the coefficient of friction on the horizontal surface is f4r = 0.2.arrow_forwardA truck is traveling at 10.0 m/s down a hill when the brakes on all four wheels lock. The hill makes an angle of 11 ° with respect to the horizontal. The coefficient of kinetic friction between the tires and the road is 0.933. How far, in meters, does the truck skid before coming to a stop?arrow_forward
- On a horizontal plane a block of mass m = 0.30 kg is placed and initially held at rest. To this block a massless string is attached and it initially keeps another block of mass M = 0.50 kg vertically at rest via a fixed pulley as shown in Figure. The coefficient of kinetic friction between the block m and the plane is Pk -0.25, but the friction between the block M and the vertical wall is zero. Calculate the tension T by string in N. (Hint: First calculate the acceleration of m or M. And set up the equation of motion for M to find the tension T.) T m Marrow_forwardA mass of 2 kg is projected with a speed of 3m/s up a plane inclined 20° with the horizontal. After traveling 0.8m, the mass comes to rest. Determine the coefficient of friction. Va = 3m/s 20°arrow_forwardA crate of mass m is initially at rest at the highest point of an inclined plane, which has a height of 4.7 m and has an angle of θ = 28° with respect to the horizontal. After it has been released, it is observed to be traveling at v = 0.85 m/s a distance d after the end of the inclined plane as shown. The coefficient of kinetic friction between the crate and the plane is μp = 0.1, and the coefficient of friction on the horizontal surface is μr = 0.2. Find the distance d, in meters.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY