Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 32P
A 5-cm-diameter horizontal jet of water with a velocity of 30 m/s relative to the ground strikes a flat plate that is moving in the same direction as the jet at a velocity of 20 m/s. The water splatters in all directions in the plane of the plate. How much force does the water stream exert on the plate?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A jet of water of diameter 75 mm moving with a velocity of 25 m/s strikes a fixed plate in such a way that the angle between the jet and plate is 60°. Determine the force exerted by the jet on the plate (i) in the direction normal to the plate and (ii) in the direction of the jet.
A 2.8-in-diameter horizontal water jet having a velocity of 88 ft/s strikes a curved plate, which deflects the water 180° at the same speed. Ignoring the frictional effects, determine the force required to hold the plate against the water stream.
A horizontal jet of water (at 10°C) that is 6 cm in diameter and has a velocity
of 20 m/s is deflected by the vane as shown. If the vane is moving at a rate of 7
m/s in the x-direction, what components of force are exerted on the vane by the
water in the x- and y-directions?
45°
Chapter 6 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 6 - Express Newton’s second law of motion for rotating...Ch. 6 - Express Newton’s first, second, and third laws.Ch. 6 - Is momentum a vector? If so, in what direction...Ch. 6 - Express the conservation of momentum principle....Ch. 6 - How do surface forces arise in the momentum...Ch. 6 - Explain the importance of the Reynolds transport...Ch. 6 - What is the importance of the momentum-flux...Ch. 6 - Write the momentum equation for steady...Ch. 6 - In the application of the momentum equation,...Ch. 6 - Two firefighters are fighting a fire with...
Ch. 6 - A rocket in space (no friction or resistance to...Ch. 6 - Describe in terms of momentum and airflow how a...Ch. 6 - Does it take more, equal, or less power for a...Ch. 6 - In a given location, would a helicopter require...Ch. 6 - Describe body forces and surface forces, and...Ch. 6 - A constant-velocity horizontal water jet from a...Ch. 6 - A horizontal water jet of constant velocity V from...Ch. 6 - A horizontal water jet from a nozzle of constant...Ch. 6 - A 2.5-cm-diameter horizontal water jet with a...Ch. 6 - A 90 elbow in a horizontal pipe is used to direct...Ch. 6 - Repeat Prob. 6-20 for the case of another...Ch. 6 - A horizontal water jet impinges against a vertical...Ch. 6 - Water enters a 7-cm-diameter pipe steadily with a...Ch. 6 - A reducing elbow in a horizontal pipe is used to...Ch. 6 - Repeat Prob. 6-24 for the case of = 125°.Ch. 6 - A 100-ft3/s water jet is moving in the positive...Ch. 6 - Reconsider Prob. 6-26E. Using appropriate...Ch. 6 - Commercially available large wind turbines have...Ch. 6 - A fan with 24-in-diameter blades moves 2000 cfm...Ch. 6 - A 3-in-diameter horizontal jet of water, with...Ch. 6 - Firefighters are holding a nozzle at the end of a...Ch. 6 - A 5-cm-diameter horizontal jet of water with a...Ch. 6 - Prob. 33PCh. 6 - A 3-in-diameter horizontal water jet having a...Ch. 6 - An unloaded helicopter of mass 12,000 kg hovers at...Ch. 6 - Prob. 36PCh. 6 - Water is flowing through a 10-cm-diameter water...Ch. 6 - Water flowing in a horizontal 25-cm-diameter pipe...Ch. 6 - Prob. 39PCh. 6 - Water enters a centrifugal pump axially at...Ch. 6 - An incompressible fluid of density and viscosity ...Ch. 6 - Consider the curved duct of Prob. 6-41, except...Ch. 6 - As a follow-up to Prob. 6-41, it turns out that...Ch. 6 - Prob. 44PCh. 6 - The weight of a water tank open to the atmosphere...Ch. 6 - A sluice gate, which controls flow rate in a...Ch. 6 - A room is to be ventilated using a centrifugal...Ch. 6 - How is the angular momentum equation obtained from...Ch. 6 - Prob. 49CPCh. 6 - Prob. 50CPCh. 6 - Prob. 51CPCh. 6 - A large lawn sprinkler with two identical arms is...Ch. 6 - Prob. 53EPCh. 6 - The impeller of a centrifugal pump has inner and...Ch. 6 - Water is flowing through a 15-cm-diameter pipe...Ch. 6 - Prob. 56PCh. 6 - Repeat Prob. 6-56 for a water flow rate of 60 L/s.Ch. 6 - Prob. 58PCh. 6 - Water enters the impeller of a centrifugal pump...Ch. 6 - A lawn sprinkler with three identical antis is...Ch. 6 - Prob. 62PCh. 6 - The impeller of a centrifugal blower has a radius...Ch. 6 - An 8-cm-diameter horizontal water jet having a...Ch. 6 - Water flowing steadily at a rate of 0.16 m3/s is...Ch. 6 - Repeat Prob. 6-66 by taking into consideration the...Ch. 6 - A 16-cm diameter horizontal water jet with a speed...Ch. 6 - Water enters vertically and steadily at a rate of...Ch. 6 - Repeal Prob. 6-69 for the case of unequal anus-the...Ch. 6 - Prob. 71PCh. 6 - Prob. 72PCh. 6 - A spacecraft cruising in space at a constant...Ch. 6 - A 60-kg ice skater is standing on ice with ice...Ch. 6 - A 5-cm-diameter horizontal jet of water, with...Ch. 6 - Water is flowing into and discharging from a pipe...Ch. 6 - Indiana Jones needs So ascend a 10-m-high...Ch. 6 - Prob. 79EPCh. 6 - A walnut with a mass of 50 g requires a force of...Ch. 6 - Prob. 81PCh. 6 - Prob. 82PCh. 6 - A horizontal water jet of constant velocity V...Ch. 6 - Show that the force exerted by a liquid jet on a...Ch. 6 - Prob. 85PCh. 6 - Prob. 86PCh. 6 - Water enters a mixed flow pump axially at a rate...Ch. 6 - Prob. 88PCh. 6 - Water enters a two-armed lawn sprinkler along the...Ch. 6 - Prob. 91PCh. 6 - Prob. 92PCh. 6 - Prob. 93PCh. 6 - Prob. 94PCh. 6 - A water jet strikes a moving plate at velocity...Ch. 6 - Water flows at mass flow rate m through a 90°...Ch. 6 - Prob. 97PCh. 6 - Water shoots out of a Iar2e tank sitting a cart...Ch. 6 - Prob. 99PCh. 6 - Prob. 100PCh. 6 - Prob. 101PCh. 6 - Consider water flow through a horizontal, short...Ch. 6 - Consider water flow through a horizontal. short...Ch. 6 - Prob. 104PCh. 6 - Prob. 105PCh. 6 - Prob. 106PCh. 6 - The velocity of wind at a wind turbine is measured...Ch. 6 - The ve1ocity of wind at a wind turbine is measured...Ch. 6 - Prob. 109PCh. 6 - Prob. 110PCh. 6 - Prob. 111PCh. 6 - Consider the impeller of a centrifugal pump with a...Ch. 6 - Prob. 113PCh. 6 - Prob. 114P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A jet of water 50mm in diameter with a velocity of 18 m/s strikes a flat plate inclined atan angle of 25° to the axis of the jet. Determine the resultant force exerted on theplate.arrow_forwardA 9-cm-diameter horizontal water jet strikes a curved plate, which deflects the water 180° at the same speed. Determine the water jet speed as the force required to hold the plate against the water stream is 7 kN. (b)arrow_forwardA horizontal water jet of constant velocity V impinges normally on a vertical flat plate and splashes off the sides in the vertical plane. The plate is moving toward the oncoming water jet with velocity 1/2V. If a force F is required to maintain the plate stationary, how much force is required to move the plate toward the water jet?arrow_forward
- Find the force exerted by a jet of water of diameter 75 mm on a stationary flat plate, when the jet strikes the plate normally with velocity of 20 m/s.arrow_forwardA 50. 95mm diameter horizontal jet of water strikes a plate. Determine the velocity of the jet if 80N of horizontal force is required to move the plate at 2.95m/s at opposite direction as that of jet. Choices 3.31 0.33 1.33 1.13 Note: please base your answer on the given sample choices thank youarrow_forwardA horizontal jet of water 1 in. in diameter and having a velocity of 25 ft per second strikes against a vertical plate. (a) Determine the force (lb) on the plate if the plate is fixed.If the plate is moving in the same direction as the jet with a uniform velocity of 10 ft per second;(b) What is the relative velocity (ft/s), and(c) Determine the force (lb) on the plate.If the plate is moving in the opposite direction as the jet with a uniform velocity of 10 ft per second. (d) What is the relative velocity (ft/s), and(e) Determine the force(lb)on the plate.arrow_forward
- A jet of water has a velocity of 20m/s and flows at 2kgs/s. The jet strikes a stationary flat plate. The normal direction to the plate is inclined at 30º to the jet.Determine the force on the plate in the direction of the jet.arrow_forwardAn 8-cm-diameter horizontal water jet having a velocity of 35 m/s strikes a vertical stationary flat plate. The water splatters in all directions in the plane of the plate. How much force is required to hold the plate against the water stream?arrow_forwardA horizontal water jet of constant velocity V impinges normally on a vertical flat plate and splashes off the sides in the vertical plane. The plate is moving toward the oncoming water jet with velocity of 0.45 V. If a force F is required to maintain the plate stationary, how much force is required to move the plate toward the water jet?arrow_forward
- A water jet of an area of 0.03 m² impinges normal on a fixed plate. If a force of 1 kN is produced as a result of the impact, the velocity of the jet would bearrow_forwardA 4-cm-diameter horizontal stationary water jet having a velocity of 50 m/s strikes a cone having in included angle at the apex 60'. The water leaves the cone symmetrically. Determine the force needed to hold the cone if: (a) It is stationary (b) It moves away from the jet at 20 m/s (c) It moves into the jet at 20 m's (Answer: (a) 421N (b) 151.5N (c) 825N)arrow_forwardHomework A circular jet of water at 20°C Implnges on the vane shown In flgure. The Incident jet has a velocity of 25 m/s and a dlameter of 200 mm. The vane divides the Incident jet equally, and the jet exits the vane as two jets, each making an angle of 200 with the Incoming Jet. (a) Determine the force on the vane when the vane 200 mm 25 m/s- 20° V. Incident jet Moving vane Is moving at a speed of 15 m/s In the same directlon as that of the Incident jet. (b) Determine the force on the vane when the vane Is moving at a speed of 15 m/s In the opposite dlirection to that of the Incident jet. Assume water at 20°C.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license