Traffic and Highway Engineering
Traffic and Highway Engineering
5th Edition
ISBN: 9781305156241
Author: Garber, Nicholas J.
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 6, Problem 18P
To determine

(a)

The maximum queue length that will be formed.

To determine

(b)

The total delay.

To determine

(c)

The number of vehicles that will be affected by the incident.

To determine

(d)

The average individual delay.

Blurred answer
Students have asked these similar questions
Traffic flow on a three-lane (one direction) freeway can be described by the Greenshields model. One lane of the three lanes on a section of this freeway will have to be closed to undertake an emergency bridge repair that is expected to take 2 hours. It is estimated that the capacity at the work zone will be reduced by 35 percent of that of the section just upstream of the work zone. The mean free flow speed of the highway is 50 mi/h and the jam density is 115 veh/mi/In. If it is estimated that the demand flow on the highway during the emergency repairs is 85 percent of the capacity, using the deterministic approach, determine the following. (a) the maximum queue length (in veh) that will be formed Your response differs from the correct answer by more than 10%. Double check your calculations. veh (b) the total delay (in h) h (c) the number of vehicles that will be affected by the incident veh (d) the average individual delay (in min) min
A six-lane freeway (three lanes in each direction) in a scenic area has a measured free-flow speed of 55 mi/h. The peak hour factor is 0.80, and there are 8% large trucks and buses and 6% recreational vehicles in the traffic stream. One upgrade is 5% and 0.5 mi long. An analyst has determined that the freeway is operating at capacity on this upgrade during the peak hour. If the peak hour traffic volume is 3900 vehicles, compute for the driver population factor used?
Consider the problem of traffic flow on a three-lane (one direction) freeway which can be described by the Greenshields model. One lane of the three lanes on a section of this freeway will have to be closed to undertake an emergency bridge repair that is expected to take several hours. It is estimated that the capacity at the work zone will be reduced by 28 percent of that of the section just upstream of the work zone. The mean free flow speed of the highway is 60 mi/h and the jam density is 140 veh/mi/ln. It is estimated that the demand flow on the highway during the emergency repairs is 86 percent of the capacity. Using the deterministic approach, determine the following for the expected repair periods of 1 h,1.5 h,2.5 h,2.75 h, and 3 h. (a) the maximum queue length (in veh) that will be formed (b) the total delay (in h) (c) the number of vehicles that will be affected by the incident (d) the average individual delay (in min) (e) Plot a graph of average individual delay…
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Structural Analysis
Civil Engineering
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:Cengage,
Text book image
Structural Analysis (10th Edition)
Civil Engineering
ISBN:9780134610672
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Fundamentals of Structural Analysis
Civil Engineering
ISBN:9780073398006
Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:McGraw-Hill Education
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781337551663
Author:DUNLAP, Richard A.
Publisher:Cengage,
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning