Introduction to Linear Algebra (Classic Version) (5th Edition) (Pearson Modern Classics for Advanced Mathematics Series)
5th Edition
ISBN: 9780134689531
Author: Lee Johnson, Dean Riess, Jimmy Arnold
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5.4, Problem 23E
Let
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
a
Question 7. If det d e f
ghi
V3
= 2. Find det
-1
2
Question 8. Let A = 1
4
5
0
3
2.
1 Find adj (A)
2 Find det (A)
3
Find A-1
2g 2h 2i
-e-f
-d
273
2a 2b 2c
Question 1. Solve the system
-
x1 x2 + 3x3 + 2x4
-x1 + x22x3 + x4
2x12x2+7x3+7x4
Question 2. Consider the system
= 1
=-2
= 1
3x1 - x2 + ax3
= 1
x1 + 3x2 + 2x3
x12x2+2x3
= -b
= 4
1 For what values of a, b will the system be inconsistent?
2 For what values of a, b will the system have only one solution?
For what values of a, b will the saystem have infinitely many solutions?
Question 5. Let A, B, C ben x n-matrices, S is nonsigular. If A = S-1 BS, show that
det (A) = det (B)
Question 6. For what values of k is the matrix A = (2- k
-1
-1
2) singular?
k
Chapter 5 Solutions
Introduction to Linear Algebra (Classic Version) (5th Edition) (Pearson Modern Classics for Advanced Mathematics Series)
Ch. 5.2 - For u,v and w given in given Exercises 13,...Ch. 5.2 - For u,v and w given in given Exercises 13,...Ch. 5.2 - For u,v and w given in given Exercises 13,...Ch. 5.2 - Prob. 4ECh. 5.2 - Prob. 5ECh. 5.2 - In Exercises 6-11, the given set is a subset of a...Ch. 5.2 - Prob. 7ECh. 5.2 - In Exercises 6-11, the given set is a subset of a...Ch. 5.2 - In Exercises 6-11, the given set is a subset of a...Ch. 5.2 - In Exercises 6-11, the given set is a subset of a...
Ch. 5.2 - Prob. 11ECh. 5.2 - Prob. 12ECh. 5.2 - Prob. 13ECh. 5.2 - Prob. 14ECh. 5.2 - Prob. 15ECh. 5.2 - Prob. 16ECh. 5.2 - Let Q denote the set of all (22) nonsingular...Ch. 5.2 - Let Q denote the set of all (22) singular matrices...Ch. 5.2 - Let Q denote the set of all (22) symmetric...Ch. 5.2 - Prove the cancellation laws for vector addition.Ch. 5.2 - Prove property 2 of Theorem 1. Hint: See the proof...Ch. 5.2 - Prove property 3 of Theorem 1. Hint: Note that...Ch. 5.2 - Prove property 5 of Theorem 1. If a0 then multiply...Ch. 5.2 - Prob. 24ECh. 5.2 - In Exercise s 25-29, the given set is a subset of...Ch. 5.2 - In Exercises 2529, the given set is a subset of...Ch. 5.2 - Prob. 27ECh. 5.2 - Prob. 28ECh. 5.2 - In Exercises 2529, the given set is a subset of...Ch. 5.2 - Prob. 30ECh. 5.2 - The following are subsets of vector space C2[1,1]....Ch. 5.2 - Prob. 32ECh. 5.2 - Let F(R) denote the set of all real valued...Ch. 5.2 - Let V={x:x=[x1x2],wherex1andx2areinR}. For u and v...Ch. 5.2 - Let, V={x:x=[x1x2],wherex1andx2areinR}. For u and...Ch. 5.2 - Let V={x:x=[x1x2],wherex20}. For u and v in V and...Ch. 5.3 - Let V be the vector space of all (23) matrices....Ch. 5.3 - Let V be the vector space of all (23) matrices....Ch. 5.3 - Let V be the vector space of all (23) matrices....Ch. 5.3 - Let V be the vector space of all (23) matrices....Ch. 5.3 - In Exercises 58, which of the given subsets of P2...Ch. 5.3 - Prob. 6ECh. 5.3 - In Exercises 58, which of the given subsets of P2...Ch. 5.3 - In Exercises 58, which of the given subsets of P2...Ch. 5.3 - In Exercises 912, which of the given subsets of...Ch. 5.3 - In Exercises 912, which of the given subsets of...Ch. 5.3 - In Exercises 912, which of the given subsets of...Ch. 5.3 - Prob. 12ECh. 5.3 - In Exercises 1316, which of the given subsets of...Ch. 5.3 - In Exercises 1316, which of the given subsets of...Ch. 5.3 - Prob. 15ECh. 5.3 - Prob. 16ECh. 5.3 - In Exercises 1721, express the given vector as a...Ch. 5.3 - In Exercises 1721, express the given vector as a...Ch. 5.3 - In Exercises 1721, express the given vector as a...Ch. 5.3 - In Exercises 1721, express the given vector as a...Ch. 5.3 - In Exercises 1721, express the given vector as a...Ch. 5.3 - Let V be the vector space of all (22) matrices....Ch. 5.3 - Let W be the subset of P3 defined by...Ch. 5.3 - Let W be the subset of P3 defined by...Ch. 5.3 - Find a spanning set for each of the subsets that...Ch. 5.3 - Show that the set W of all symmetric (33) matrices...Ch. 5.3 - The trace of an (nn) matrix A=(aij), denoted...Ch. 5.3 - Prob. 28ECh. 5.3 - Prob. 29ECh. 5.3 - Prob. 30ECh. 5.3 - Let V be the set of all (33) upper-triangular...Ch. 5.3 - Prob. 32ECh. 5.3 - Let A be an arbitrary matrix in the vector space...Ch. 5.4 - In exercise 14, W is a subspace of the vector...Ch. 5.4 - In exercise 14, W is a subspace of the vector...Ch. 5.4 - In exercise 14, W is a subspace of the vector...Ch. 5.4 - In exercise 1-4, W is a subspace of the vector...Ch. 5.4 - In exercise 58, W is a subspace of P2. In each...Ch. 5.4 - In Exercises 58, W is a subspace of P2. In each...Ch. 5.4 - In Exercises 58, W is a subspace of P2. In each...Ch. 5.4 - In Exercises 58, W is a subspace of P2. In each...Ch. 5.4 - Find a basis for the subspace V of P4, where...Ch. 5.4 - Prove that the set of all real (22) symmetric...Ch. 5.4 - Let V be the vector space of all (22) real...Ch. 5.4 - With respect to the basis B={1,x,x2} for P2, find...Ch. 5.4 - With respect to the basis B={E11,E12,E21,E22} for...Ch. 5.4 - Prove that {1,x,x2,......xn} is a linearly...Ch. 5.4 - In Exercise 1517, use the basis B of Exercise 11...Ch. 5.4 - In Exercise 1517, use the basis B of Exercise 11...Ch. 5.4 - In Exercise 1517, use the basis B of Exercise 11...Ch. 5.4 - In Exercise 1821, use Exercise 14 and property 2...Ch. 5.4 - In Exercise 1821, use Exercise 14 and property 2...Ch. 5.4 - In Exercise 1821, use Exercise 14 and property 2...Ch. 5.4 - In Exercise 1821, use Exercise 14 and property 2...Ch. 5.4 - 22. In P2, let S={p1(x),p2(x),p3(x),p4(x)}, where...Ch. 5.4 - Let S be the subset of P2 given in Exercise 22....Ch. 5.4 - Let V be the vector space of all (22) matrices and...Ch. 5.4 - Let V and S be as in Exercise 24. Find a subset of...Ch. 5.4 - In P2, let Q={p1(x),p2(x),p3(x)}, Where...Ch. 5.4 - Let Q be the basis for P2 given in Exercise 26....Ch. 5.4 - Let Q be the basis for P2 given in Exercise 26....Ch. 5.4 - In the vector space V of (22) matrices, let...Ch. 5.4 - With V and Q as in Exercise 29, find [A]Q for,...Ch. 5.4 - With V and Q as in Exercise 29, find [A]Q for,...Ch. 5.4 - Give an alternate proof that {1,x,x2} is a...Ch. 5.4 - The set {sinx,cosx} is a subset of the vector...Ch. 5.4 - In Exercises 34 and 35, V is the set of...Ch. 5.4 - In Exercises 34 and 35, V is the set of...Ch. 5.4 - Prob. 36ECh. 5.4 - Prob. 37ECh. 5.4 - Use Exercise 37 to obtain necessary and sufficient...Ch. 5.5 - 1.Let V be the set of all real (33) matrices, and...Ch. 5.5 - Prob. 2ECh. 5.5 - Prob. 3ECh. 5.5 - Prob. 4ECh. 5.5 - Recall that a square matrix A is called the skew...Ch. 5.5 - Prob. 6ECh. 5.5 - Prob. 7ECh. 5.5 - In Exercises 813, a subset S of vector space V is...Ch. 5.5 - In Exercises 813, a subset S of vector space V is...Ch. 5.5 - In Exercises 813, a subset S of vector space V is...Ch. 5.5 - In Exercises 813, a subset S of vector space V is...Ch. 5.5 - In Exercises 813, a subset S of vector space V is...Ch. 5.5 - In Exercises 813, a subset S of vector space V is...Ch. 5.5 - 14. Let W be the subspace of C[,] consisting of...Ch. 5.5 - Let V denote the set of all infinite sequences of...Ch. 5.5 - Prob. 16ECh. 5.5 - Let W be a subspace of a finite-dimensional vector...Ch. 5.5 - Prob. 18ECh. 5.5 - Prob. 19ECh. 5.5 - Prob. 20ECh. 5.5 - Prob. 21ECh. 5.5 - Prob. 22ECh. 5.5 - By Theorem 5 of Section 5.4, an (nn) transition...Ch. 5.5 - Prob. 24ECh. 5.6 - Prove that x,y=4x1y1+x2y2 is an inner product on...Ch. 5.6 - Prob. 2ECh. 5.6 - A real (nn) symmetric matrix A is called positive...Ch. 5.6 - Prove that the following symmetric matrix A is...Ch. 5.6 - Prob. 5ECh. 5.6 - Prob. 6ECh. 5.6 - Prob. 7ECh. 5.6 - Prob. 8ECh. 5.6 - Prob. 9ECh. 5.6 - In P2, let p(x)=1+2x+x2 and q(x)=1x+2x2. Using the...Ch. 5.6 - Prob. 11ECh. 5.6 - Prob. 12ECh. 5.6 - Prob. 13ECh. 5.6 - Prob. 14ECh. 5.6 - Let {u1,u2} be the orthogonal basis for R2...Ch. 5.6 - Prob. 16ECh. 5.6 - Prob. 17ECh. 5.6 - Prob. 18ECh. 5.6 - Prob. 19ECh. 5.6 - Prob. 20ECh. 5.6 - Prob. 21ECh. 5.6 - Prob. 22ECh. 5.6 - Prob. 23ECh. 5.6 - Prob. 24ECh. 5.6 - Prob. 25ECh. 5.6 - Prob. 26ECh. 5.6 - Prob. 27ECh. 5.6 - Prob. 28ECh. 5.6 - A sequence of orthogonal polynomials usually...Ch. 5.6 - Prob. 30ECh. 5.6 - Show that if A is a real (nn) matrix and if the...Ch. 5.7 - In Exercises 14, V is the vector space of all (22)...Ch. 5.7 - In Exercises 14, V is the vector space of all (22)...Ch. 5.7 - In Exercises 14, V is the vector space of all (22)...Ch. 5.7 - In Exercises 14, V is the vector space of all (22)...Ch. 5.7 - In Exercises 58, determine whether T is a linear...Ch. 5.7 - In Exercises 58, determine whether T is a linear...Ch. 5.7 - In Exercises 58, determine whether T is a linear...Ch. 5.7 - In Exercises 58, determine whether T is a linear...Ch. 5.7 - Suppose that T:P2P3 is a linear transformation,...Ch. 5.7 - 10. Suppose that T:P2P4 is a linear...Ch. 5.7 - Let V be the set of all (22) matrices and suppose...Ch. 5.7 - With V as in Exercise 11, define T:VR2 by...Ch. 5.7 - Let T:P4P2 be the linear transformation defined by...Ch. 5.7 - Define T:P4P3 by...Ch. 5.7 - Identify N(T) and R(T) for the linear...Ch. 5.7 - Identify N(T) and R(T) for the linear...Ch. 5.7 - Prob. 17ECh. 5.7 - Prob. 18ECh. 5.7 - Suppose that T:P4P2 is a linear transformation....Ch. 5.7 - Prob. 21ECh. 5.7 - Prob. 22ECh. 5.7 - Prob. 23ECh. 5.7 - Prob. 24ECh. 5.7 - Prob. 25ECh. 5.7 - Prob. 26ECh. 5.7 - Let V be the vector space of all (22) matrices and...Ch. 5.8 - In Exercises 16, the linear transformations S,T,...Ch. 5.8 - In Exercises 16, the linear transformations S,T,...Ch. 5.8 - In Exercises 16, the linear transformations S,T,...Ch. 5.8 - In Exercises 16, the linear transformations S,T,...Ch. 5.8 - In Exercises 16, the linear transformations S,T,...Ch. 5.8 - In Exercises 16, the linear transformations S,T,...Ch. 5.8 - 7. The functions ex,e2x and e3x are linearly...Ch. 5.8 - Let V be the subspace of C[0,1] defined by...Ch. 5.8 - Let V be the vector space of all 22 matrices and...Ch. 5.8 - Let V be the vector space of all (22) matrices,...Ch. 5.8 - Prob. 11ECh. 5.8 - Let U be the vector space of all (22) symmetric...Ch. 5.8 - Prob. 13ECh. 5.8 - Prob. 14ECh. 5.8 - Prob. 15ECh. 5.8 - Prob. 16ECh. 5.8 - Prob. 17ECh. 5.8 - Let S:UV and T:VW be linear transformations. a...Ch. 5.8 - Prob. 19ECh. 5.8 - Prob. 20ECh. 5.8 - Prob. 21ECh. 5.8 - Prob. 22ECh. 5.8 - Prob. 23ECh. 5.8 - Prob. 24ECh. 5.8 - Prob. 25ECh. 5.8 - Prob. 26ECh. 5.8 - Prob. 27ECh. 5.8 - Prob. 28ECh. 5.8 - Prob. 29ECh. 5.9 - In Exercises 110, the linear transformations S,T,H...Ch. 5.9 - In Exercises 110, the linear transformations S,T,H...Ch. 5.9 - In Exercises 110, the linear transformations S,T,H...Ch. 5.9 - In Exercises 110, the linear transformations S,T,H...Ch. 5.9 - In Exercises 110, the linear transformations S,T,H...Ch. 5.9 - In Exercises 110, the linear transformations S,T,H...Ch. 5.9 - In Exercises 110, the linear transformations S,T,H...Ch. 5.9 - In Exercises 110, the linear transformations S,T,H...Ch. 5.9 - In Exercises 110, the linear transformations S,T,H...Ch. 5.9 - In Exercises 110, the linear transformations S,T,H...Ch. 5.9 - Let T:VV be the linear transformation defined in...Ch. 5.9 - Let T:VV be the linear transformation defined in...Ch. 5.9 - Let V be the vector space of (22) matrices and...Ch. 5.9 - Let S:P2P3 be given by S(p)=x3px2p+3p. Find the...Ch. 5.9 - Let S be the transformation in Exercise 14, let...Ch. 5.9 - Let S be the transformation in Exercise 14, let...Ch. 5.9 - Let T:P2R3 be given by T(p)=[p(0)3p(1)p(1)+p(0)]....Ch. 5.9 - Find the representation for the transformation in...Ch. 5.9 - Let T:VV be a linear transformation, where...Ch. 5.9 - Let T:R3R2 be given by T(x)=Ax, where A=[121304]....Ch. 5.9 - Let T:P2P2 be defined by...Ch. 5.9 - Let T be the linear transformation defined in...Ch. 5.9 - Let T be the linear transformation defined in...Ch. 5.9 - Prob. 24ECh. 5.9 - Prob. 25ECh. 5.9 - Prob. 26ECh. 5.9 - Prob. 27ECh. 5.9 - Prob. 28ECh. 5.9 - Prob. 29ECh. 5.9 - Prob. 30ECh. 5.9 - In Exercise 31 and 32, Q is the (34) matrix given...Ch. 5.9 - Prob. 32ECh. 5.9 - Complete the proof of theorem 21 by showing that...Ch. 5.10 - Let T:R2R2 is defined by T([x1x2])=[2x1+x2x1+2x2]...Ch. 5.10 - Let T:P2P2 is defined by...Ch. 5.10 - Prob. 3ECh. 5.10 - Prob. 4ECh. 5.10 - Prob. 5ECh. 5.10 - Prob. 6ECh. 5.10 - Prob. 7ECh. 5.10 - Repeat Exercise 7 for the basis vectors w1=[43],...Ch. 5.10 - Prob. 9ECh. 5.10 - Represent the following quadratic polynomials in...Ch. 5.10 - Prob. 11ECh. 5.10 - Let T:P2P2 is a linear transformation defined in...Ch. 5.10 - Prob. 13ECh. 5.10 - In Exercises 14-16, proceed through the following...Ch. 5.10 - In Exercises 14-16, proceed through the following...Ch. 5.10 - In Exercises 14-16, proceed through the following...Ch. 5.10 - Prob. 17ECh. 5.10 - Prob. 18ECh. 5.10 - Prob. 19ECh. 5.10 - Prob. 20ECh. 5.10 - Prob. 21ECh. 5.SE - Let V be the set of all 2x2 matrices with Real...Ch. 5.SE - Prob. 2SECh. 5.SE - Prob. 3SECh. 5.SE - Prob. 4SECh. 5.SE - Prob. 5SECh. 5.SE - Prob. 6SECh. 5.SE - Prob. 7SECh. 5.SE - In Exercises 7-11, use the fact that the matrix...Ch. 5.SE - Prob. 9SECh. 5.SE - In Exercises 7-11, use the fact that the matrix...Ch. 5.SE - In Exercise 7-11, Use the fact that the matrix...Ch. 5.SE - Show that there is a linear transformations T:R2P2...Ch. 5.SE - Prob. 13SECh. 5.SE - Let V be the vector space for all (22) matrices,...Ch. 5.CE - In Exercise 1-10, answer true or false. Justify...Ch. 5.CE - In Exercise 1-10, answer true or false. Justify...Ch. 5.CE - Prob. 3CECh. 5.CE - In Exercise 1-10, answer true or false. Justify...Ch. 5.CE - Prob. 5CECh. 5.CE - In Exercise 1-10, answer true or false. Justify...Ch. 5.CE - Prob. 7CECh. 5.CE - In Exercise 1-10, answer true or false. Justify...Ch. 5.CE - In Exercise 1-10, answer true or false. Justify...Ch. 5.CE - In Exercise 1-10, answer true or false. Justify...Ch. 5.CE - In Exercise 11-19, give a brief answer. Let W be a...Ch. 5.CE - In Exercise 11-19, give a brief answer. Let W be a...Ch. 5.CE - Prob. 13CECh. 5.CE - In Exercise 11-19, give a brief answer. Give...Ch. 5.CE - In Exercise 11-19, give a brief answer. If U and W...Ch. 5.CE - In Exercise 11-19, give a brief answer. Let...Ch. 5.CE - In Exercise 11-19, give a brief answer. Let...Ch. 5.CE - Let T:VW be a linear transformation. a.If T is one...Ch. 5.CE - Prob. 19CE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- 1 4 5 Question 3. Find A-1 (if exists), where A = -3 -1 -2 2 3 4 Question 4. State 4 equivalent conditions for a matrix A to be nonsingulararrow_forwardHow long is a guy wire reaching from the top of a 15-foot pole to a point on the ground 9-feet from the pole? Question content area bottom Part 1 The guy wire is exactly feet long. (Type an exact answer, using radicals as needed.) Part 2 The guy wire is approximatelyfeet long. (Round to the nearest thousandth.)arrow_forwardQuestion 6 Not yet answered Marked out of 5.00 Flag question = If (4,6,-11) and (-12,-16,4), = Compute the cross product vx w karrow_forward
- Consider the following vector field v^-> (x,y): v^->(x,y)=2yi−xj What is the magnitude of the vector v⃗ located in point (13,9)? [Provide your answer as an integer number (no fraction). For a decimal number, round your answer to 2 decimal places]arrow_forwardQuestion 4 Find the value of the first element for the first row of the inverse matrix of matrix B. 3 Not yet answered B = Marked out of 5.00 · (³ ;) Flag question 7 [Provide your answer as an integer number (no fraction). For a decimal number, round your answer to 2 decimal places] Answer:arrow_forwardQuestion 2 Not yet answered Multiply the following Matrices together: [77-4 A = 36 Marked out of -5 -5 5.00 B = 3 5 Flag question -6 -7 ABarrow_forward
- Assume {u1, U2, u3, u4} does not span R³. Select the best statement. A. {u1, U2, u3} spans R³ if u̸4 is a linear combination of other vectors in the set. B. We do not have sufficient information to determine whether {u₁, u2, u3} spans R³. C. {U1, U2, u3} spans R³ if u̸4 is a scalar multiple of another vector in the set. D. {u1, U2, u3} cannot span R³. E. {U1, U2, u3} spans R³ if u̸4 is the zero vector. F. none of the abovearrow_forwardSelect the best statement. A. If a set of vectors includes the zero vector 0, then the set of vectors can span R^ as long as the other vectors are distinct. n B. If a set of vectors includes the zero vector 0, then the set of vectors spans R precisely when the set with 0 excluded spans Rª. ○ C. If a set of vectors includes the zero vector 0, then the set of vectors can span Rn as long as it contains n vectors. ○ D. If a set of vectors includes the zero vector 0, then there is no reasonable way to determine if the set of vectors spans Rn. E. If a set of vectors includes the zero vector 0, then the set of vectors cannot span Rn. F. none of the abovearrow_forwardWhich of the following sets of vectors are linearly independent? (Check the boxes for linearly independent sets.) ☐ A. { 7 4 3 13 -9 8 -17 7 ☐ B. 0 -8 3 ☐ C. 0 ☐ D. -5 ☐ E. 3 ☐ F. 4 THarrow_forward
- 3 and = 5 3 ---8--8--8 Let = 3 U2 = 1 Select all of the vectors that are in the span of {u₁, u2, u3}. (Check every statement that is correct.) 3 ☐ A. The vector 3 is in the span. -1 3 ☐ B. The vector -5 75°1 is in the span. ГОЛ ☐ C. The vector 0 is in the span. 3 -4 is in the span. OD. The vector 0 3 ☐ E. All vectors in R³ are in the span. 3 F. The vector 9 -4 5 3 is in the span. 0 ☐ G. We cannot tell which vectors are i the span.arrow_forward(20 p) 1. Find a particular solution satisfying the given initial conditions for the third-order homogeneous linear equation given below. (See Section 5.2 in your textbook if you need a review of the subject.) y(3)+2y"-y-2y = 0; y(0) = 1, y'(0) = 2, y"(0) = 0; y₁ = e*, y2 = e¯x, y3 = e−2x (20 p) 2. Find a particular solution satisfying the given initial conditions for the second-order nonhomogeneous linear equation given below. (See Section 5.2 in your textbook if you need a review of the subject.) y"-2y-3y = 6; y(0) = 3, y'(0) = 11 yc = c₁ex + c2e³x; yp = −2 (60 p) 3. Find the general, and if possible, particular solutions of the linear systems of differential equations given below using the eigenvalue-eigenvector method. (See Section 7.3 in your textbook if you need a review of the subject.) = a) x 4x1 + x2, x2 = 6x1-x2 b) x=6x17x2, x2 = x1-2x2 c) x = 9x1+5x2, x2 = −6x1-2x2; x1(0) = 1, x2(0)=0arrow_forwardFind the perimeter and areaarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,
- Elementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Vector Spaces | Definition & Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=72GtkP6nP_A;License: Standard YouTube License, CC-BY
Understanding Vector Spaces; Author: Professor Dave Explains;https://www.youtube.com/watch?v=EP2ghkO0lSk;License: Standard YouTube License, CC-BY