
Concept explainers
A bookstore at the Hartsfield-Jackson Airport in Atlanta sells reading materials (paperback books, newspapers, magazines) as well as snacks (peanuts, pretzels, candy, etc.). A point-of-sale terminal collects a variety of information about customer purchases. Shown below is a table showing the number of snack items and the number of items of reading material purchased by the most recent 600 customers.
0 | Reading Material 1 |
2 | ||
0 | 0 | 60 | 18 | |
Snacks | 1 | 240 | 90 | 30 |
2 | 120 | 30 | 12 |
- a. Using the data in the table construct an empirical discrete bivariate
probability distribution for x = number of snack items and y = number of reading materials in a randomly selected customer purchase. what is the probability of a customer purchase consisting of one item of reading materials and two snack items? what is the probability of a customer purchasing one snack item only? why is the probability f(x = 0, y = 0) = 0? - b. Show the marginal probability distribution for the number of snack items purchased. Compute the
expected value and variance. - c. What is the expected value and variance for the number of reading materials purchased by a customer?
- d. Show the probability distribution for t = total number of items in a customer purchase. Compute its expected value and variance.
Compute the
a.

Develop an empirical bivariate probability distribution for number of snack items and the number of reading materials in a randomly selected customer purchase.
Find the probability of a customer purchase consisting of one item of reading materials and two snack items, probability of a customer purchasing one snack item and to explain why the probability, f(x=0,y=0)=0.
Answer to Problem 62SE
The empirical bivariate probability distribution for number of snack items and the number of reading materials in a randomly selected customer purchase is as follows:
Reading material (y) | |||||
0 | 1 | 2 | Total | ||
Snacks | 0 | 0.00 | 0.10 | 0.03 | 0.13 |
1 | 0.40 | 0.15 | 0.05 | 0.60 | |
2 | 0.20 | 0.05 | 0.02 | 0.27 | |
Total | 0.60 | 0.30 | 0.10 | 1.00 |
The probability of a customer purchase consisting of one item of reading materials and two snack items is 0.05.
The probability of a customer purchasing one snack item is 0.40.
Explanation of Solution
Calculation:
The table represents the number of snack items and the number of items of reading material purchased by 600 customers. The random variable x represents the number of snack items and the random variable y represents the number of reading materials in a randomly selected customer purchase.
The bivariate distribution is obtained by dividing each frequency in the table by the total number of customers. The probability of a customer purchasing 1 item of reading material and 1 item of snacks is,
f(1,1)=FrequencyTotal number of Customers=90600=0.15
Similarly other bivariate probabilities are obtained and given in the following table:
Reading material (y) | |||||
0 | 1 | 2 | Total | ||
Snacks(x) | 0 | 0600=0.00 | 60600=0.10 | 18600=0.03 | (0.00+0.10+0.03)=0.13 |
1 | 240600=0.40 | 90600=0.15 | 30600=0.05 | (0.40+0.15+0.05)=0.60 | |
2 | 120600=0.20 | 30600=0.05 | 12600=0.02 | (0.20+0.05+0.02)=0.27 | |
Total | (0.00+0.40+0.20)=0.60 | (0.10+0.15+0.05)=0.30 | (0.03+0.05+0.02)=0.10 | 1.00 |
The marginal probability distribution for the random variable x is in the rightmost column and the marginal probability distribution for the random variable y is in the bottom row.
Thus, the bivariate probability distribution for number of snack items and the number of reading materials in a randomly selected customer purchase is obtained.
From the bivariate probability distribution table, the probability of a customer purchase consisting of one item of reading materials and two snack items is given by,
f(x=1,y=2)=0.05
Thus, the probability of a customer purchase consisting of one item of reading materials and two snack items is 0.05.
From the bivariate probability distribution table, the probability of a customer purchase one snack item is given by,
f(x=1,y=0)=0.40
Thus, the probability of a customer purchasing one snack item is 0.40.
The point sale terminal is only used when someone makes a purchase. Thus, the probability value, f(x=0,y=0)=0.
b.

Show the marginal probability distribution for the number of snack items purchased and compute its expected value and variance.
Answer to Problem 62SE
The marginal probability distribution for the number of snack items purchased is:
x | f(x) |
0 | 0.13 |
1 | 0.60 |
2 | 0.27 |
The expected value for the number of snack items purchased is 1.14.
The variance for the number of snack items purchased is 0.3804.
Explanation of Solution
Calculation:
The marginal distribution for the number of snack items purchased is the values of the random variable x and the corresponding probabilities. This values are obtained from the rightmost column of the bivariate probability distribution for number of snack items and the number of reading materials in a randomly selected customer purchase obtained in part (a).
The marginal distribution of parts cost is given in the following table:
x | f(x) |
0 | 0.13 |
1 | 0.60 |
2 | 0.27 |
Thus, the marginal distribution of parts cost is obtained.
The expected value of the discrete random variable:
The formula for the expected value of a discrete random variable is,
E(x)=μ=∑x⋅f(x)
The expected value for the random variable x is obtained in the following table:
x | f(x) | x⋅f(x) |
0 | 0.13 | 0.00 |
1 | 0.60 | 0.60 |
2 | 0.27 | 0.54 |
Total | 1.00 | 1.14 |
Thus, the expected value for the random variable x is 1.14.
The formula for the variance of the discrete random variable x is,
σ2=∑[(x−μ)2. f(x)]
The variance of the random variable x is obtained using the following table:
x | f(x ) | (x−μ) | (x−μ)2 | (x−μ)2. f(x) |
0 | 0.13 | –1.14 | 1.2996 | 0.16895 |
1 | 0.60 | –0.14 | 0.0196 | 0.01176 |
2 | 0.27 | 0.86 | 0.7396 | 0.19969 |
Total | 1.00 | –0.42 | 2.0588 | 0.3804 |
Therefore,
σ2=0.3804
Thus, the variance of the random variable x is 0.3804.
c.

Compute the expected value and variance for the number of reading materials purchased by a customer.
Answer to Problem 62SE
The expected value for the number of reading materials purchased is 0.50.
The variance for the number of reading materials purchased is 0.45.
Explanation of Solution
Calculation:
The expected value of the discrete random variable:
The formula for the expected value of a discrete random variable is,
E(y)=μ=∑y⋅f(y)
The expected value for the random variable y is obtained in the following table:
y | f(y) | y⋅f(y) |
0 | 0.60 | 0.0 |
1 | 0.30 | 0.30 |
2 | 0.10 | 0.2 |
Total | 1.0 | 0.5 |
Thus, the expected value for the random variable y is 0.5.
The formula for the variance of the discrete random variable y is,
σ2=∑[(y−μ)2. f(y)]
The variance of the random variable y is obtained using the following table:
y | f(y) | (y−μ) | (y−μ)2 | (y−μ)2. f(y) |
0 | 0.60 | –0.5 | 0.25 | 0.15 |
1 | 0.30 | 0.5 | 0.25 | 0.075 |
2 | 0.10 | 1.5 | 2.25 | 0.225 |
Total | 1.00 | 0.45 |
Therefore,
σ2=0.45
Thus, the variance of the random variable y is 0.45.
That is, the expected value for the number of reading materials purchased is 0.50 and the variance is 0.45.
d.

Show the probability distribution for total number of items in a customer purchase and to compute its expected value and variance.
Answer to Problem 62SE
The probability distribution for total number of items in a customer purchase is given below:
t | f(t) |
1 | 0.50 |
2 | 0.38 |
3 | 0.10 |
4 | 0.02 |
The expected number of items purchased is 1.64.
The variance for the total number of items purchased is 0.5504.
Explanation of Solution
Calculation:
The total number of items purchased is represented using the random variable t. the random variable t take the value 1 when x=0,y=1 and when x=1,y=0. That is,
f(t=1)=f(x=0,y=1)+f(x=1,y=0)
Substitute the values from the bivariate probability distribution table in part (a),
f(t=1)=f(x=0,y=1)+f(x=1,y=0)=0.40+0.10=0.50
Similarly, other probability values can be obtained. Thus, the probability distribution for the random variable t is:
t=x+y | f(t) |
1 | 0.50 |
2 | 0.38 |
3 | 0.10 |
4 | 0.02 |
e.

Compute the covariance and correlation coefficient between x and y.
Identify the relationship between the number of reading materials and the number of snacks purchased on a customer visit.
Answer to Problem 62SE
The covariance of x and y is –0.14 and the correlation coefficient is –0.3384.
There is a negative correlation between the number of reading materials and the number of snacks purchased on a customer visit.
Explanation of Solution
Calculation:
Covariance for the random variables x and y is given by,
σxy=[Var(x+y)−Var(x)−Var(y)]2
Substitute the values, Var(x+y)=0.5504,Var(x)=0.3804 and Var(y)=0.45
σxy=[Var(x+y)−Var(x)−Var(y)]2=0.5504−0.3804−0.452=−0.14
Correlation between the random variables x and y is given by,
ρxy=σxyσxσy
The standard deviation is obtained by taking the square root of variance.
σx=√Var(x)=√0.3804=0.6168
σy=√Var(y)=√0.45=0.6708
Substitute the values in the correlation formula,
ρxy=σxyσxσy=−0.14(0.6168)(0.6708)=−0.3384
The covariance of x and y is –0.14 and the correlation coefficient is –0.3384.
Thus, correlation coefficient of x and y is –0.3384 which is negative. Thus, there is a negative correlation between the number of reading materials and the number of snacks purchased on a customer visit. That is, as the purchase of reading materials increase the number of snack items purchased decreases.
Want to see more full solutions like this?
Chapter 5 Solutions
Bundle: Statistics For Business & Economics, Revised, 12th + Mindtap Business Statistics Access Code
- a) Let X and Y be independent random variables both with the same mean µ=0. Define a new random variable W = aX +bY, where a and b are constants. (i) Obtain an expression for E(W).arrow_forwardThe table below shows the estimated effects for a logistic regression model with squamous cell esophageal cancer (Y = 1, yes; Y = 0, no) as the response. Smoking status (S) equals 1 for at least one pack per day and 0 otherwise, alcohol consumption (A) equals the average number of alcohoic drinks consumed per day, and race (R) equals 1 for blacks and 0 for whites. Variable Effect (β) P-value Intercept -7.00 <0.01 Alcohol use 0.10 0.03 Smoking 1.20 <0.01 Race 0.30 0.02 Race × smoking 0.20 0.04 Write-out the prediction equation (i.e., the logistic regression model) when R = 0 and again when R = 1. Find the fitted Y S conditional odds ratio in each case. Next, write-out the logistic regression model when S = 0 and again when S = 1. Find the fitted Y R conditional odds ratio in each case.arrow_forwardThe chi-squared goodness-of-fit test can be used to test if data comes from a specific continuous distribution by binning the data to make it categorical. Using the OpenIntro Statistics county_complete dataset, test the hypothesis that the persons_per_household 2019 values come from a normal distribution with mean and standard deviation equal to that variable's mean and standard deviation. Use signficance level a = 0.01. In your solution you should 1. Formulate the hypotheses 2. Fill in this table Range (-⁰⁰, 2.34] (2.34, 2.81] (2.81, 3.27] (3.27,00) Observed 802 Expected 854.2 The first row has been filled in. That should give you a hint for how to calculate the expected frequencies. Remember that the expected frequencies are calculated under the assumption that the null hypothesis is true. FYI, the bounderies for each range were obtained using JASP's drag-and-drop cut function with 8 levels. Then some of the groups were merged. 3. Check any conditions required by the chi-squared…arrow_forward
- Suppose that you want to estimate the mean monthly gross income of all households in your local community. You decide to estimate this population parameter by calling 150 randomly selected residents and asking each individual to report the household’s monthly income. Assume that you use the local phone directory as the frame in selecting the households to be included in your sample. What are some possible sources of error that might arise in your effort to estimate the population mean?arrow_forwardFor the distribution shown, match the letter to the measure of central tendency. A B C C Drag each of the letters into the appropriate measure of central tendency. Mean C Median A Mode Barrow_forwardA physician who has a group of 38 female patients aged 18 to 24 on a special diet wishes to estimate the effect of the diet on total serum cholesterol. For this group, their average serum cholesterol is 188.4 (measured in mg/100mL). Suppose that the total serum cholesterol measurements are normally distributed with standard deviation of 40.7. (a) Find a 95% confidence interval of the mean serum cholesterol of patients on the special diet.arrow_forward
- The accompanying data represent the weights (in grams) of a simple random sample of 10 M&M plain candies. Determine the shape of the distribution of weights of M&Ms by drawing a frequency histogram. Find the mean and median. Which measure of central tendency better describes the weight of a plain M&M? Click the icon to view the candy weight data. Draw a frequency histogram. Choose the correct graph below. ○ A. ○ C. Frequency Weight of Plain M and Ms 0.78 0.84 Frequency OONAG 0.78 B. 0.9 0.96 Weight (grams) Weight of Plain M and Ms 0.84 0.9 0.96 Weight (grams) ○ D. Candy Weights 0.85 0.79 0.85 0.89 0.94 0.86 0.91 0.86 0.87 0.87 - Frequency ☑ Frequency 67200 0.78 → Weight of Plain M and Ms 0.9 0.96 0.84 Weight (grams) Weight of Plain M and Ms 0.78 0.84 Weight (grams) 0.9 0.96 →arrow_forwardThe acidity or alkalinity of a solution is measured using pH. A pH less than 7 is acidic; a pH greater than 7 is alkaline. The accompanying data represent the pH in samples of bottled water and tap water. Complete parts (a) and (b). Click the icon to view the data table. (a) Determine the mean, median, and mode pH for each type of water. Comment on the differences between the two water types. Select the correct choice below and fill in any answer boxes in your choice. A. For tap water, the mean pH is (Round to three decimal places as needed.) B. The mean does not exist. Data table Тар 7.64 7.45 7.45 7.10 7.46 7.50 7.68 7.69 7.56 7.46 7.52 7.46 5.15 5.09 5.31 5.20 4.78 5.23 Bottled 5.52 5.31 5.13 5.31 5.21 5.24 - ☑arrow_forwardく Chapter 5-Section 1 Homework X MindTap - Cengage Learning x + C webassign.net/web/Student/Assignment-Responses/submit?pos=3&dep=36701632&tags=autosave #question3874894_3 M Gmail 品 YouTube Maps 5. [-/20 Points] DETAILS MY NOTES BBUNDERSTAT12 5.1.020. ☆ B Verify it's you Finish update: All Bookmarks PRACTICE ANOTHER A computer repair shop has two work centers. The first center examines the computer to see what is wrong, and the second center repairs the computer. Let x₁ and x2 be random variables representing the lengths of time in minutes to examine a computer (✗₁) and to repair a computer (x2). Assume x and x, are independent random variables. Long-term history has shown the following times. 01 Examine computer, x₁₁ = 29.6 minutes; σ₁ = 8.1 minutes Repair computer, X2: μ₂ = 92.5 minutes; σ2 = 14.5 minutes (a) Let W = x₁ + x2 be a random variable representing the total time to examine and repair the computer. Compute the mean, variance, and standard deviation of W. (Round your answers…arrow_forward
- The acidity or alkalinity of a solution is measured using pH. A pH less than 7 is acidic; a pH greater than 7 is alkaline. The accompanying data represent the pH in samples of bottled water and tap water. Complete parts (a) and (b). Click the icon to view the data table. (a) Determine the mean, median, and mode pH for each type of water. Comment on the differences between the two water types. Select the correct choice below and fill in any answer boxes in your choice. A. For tap water, the mean pH is (Round to three decimal places as needed.) B. The mean does not exist. Data table Тар Bottled 7.64 7.45 7.46 7.50 7.68 7.45 7.10 7.56 7.46 7.52 5.15 5.09 5.31 5.20 4.78 5.52 5.31 5.13 5.31 5.21 7.69 7.46 5.23 5.24 Print Done - ☑arrow_forwardThe median for the given set of six ordered data values is 29.5. 9 12 23 41 49 What is the missing value? The missing value is ☐.arrow_forwardFind the population mean or sample mean as indicated. Sample: 22, 18, 9, 6, 15 □ Select the correct choice below and fill in the answer box to complete your choice. O A. x= B. μεarrow_forward
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningElementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage Learning





