Introduction To Health Physics
5th Edition
ISBN: 9780071835275
Author: Johnson, Thomas E. (thomas Edward), Cember, Herman.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 5.15P
To determine
The relative portion of 1 MeV photons to 0.1 MeV photons in emergent beam.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The point source Co-60 emits gamma with energies of 1.17 MeV and 1.33 MeV. Each of these energies emits the same number of photon particles. At a certain location, the flux that is read is 5.7 x 109 photons/cm2.s, what is the intensity or energy flux with units of J/m^2.min
T1
The point source Co-60 emits gamma with energies of 1.17 MeV and 1.33 MeV. Each of these energies emits the same number of photon particles. At a certain location, the flux read is 5.7 x 109 photons/cm2.s, what is the flux energy for 1.17 MeV for 24 hours of radiation exposure?
Chapter 5 Solutions
Introduction To Health Physics
Ch. 5 - Prob. 5.1PCh. 5 - Prob. 5.2PCh. 5 - Prob. 5.3PCh. 5 - Prob. 5.4PCh. 5 - Prob. 5.5PCh. 5 - Prob. 5.6PCh. 5 - Prob. 5.7PCh. 5 - Prob. 5.8PCh. 5 - Prob. 5.9PCh. 5 - Prob. 5.10P
Ch. 5 - Prob. 5.11PCh. 5 - Prob. 5.12PCh. 5 - Prob. 5.13PCh. 5 - Prob. 5.14PCh. 5 - Prob. 5.15PCh. 5 - Prob. 5.16PCh. 5 - Prob. 5.17PCh. 5 - Prob. 5.18PCh. 5 - Prob. 5.19PCh. 5 - Prob. 5.20PCh. 5 - Calculate the probability that a 2-MeV photon in a...Ch. 5 - Prob. 5.22PCh. 5 - Prob. 5.23PCh. 5 - Prob. 5.24PCh. 5 - Prob. 5.25PCh. 5 - Prob. 5.26PCh. 5 - Prob. 5.27PCh. 5 - Prob. 5.28PCh. 5 - Prob. 5.29PCh. 5 - Prob. 5.30PCh. 5 - Prob. 5.31PCh. 5 - Prob. 5.32PCh. 5 - Prob. 5.33PCh. 5 - Prob. 5.34PCh. 5 - Prob. 5.35PCh. 5 - Prob. 5.36PCh. 5 - Prob. 5.37PCh. 5 - Prob. 5.38PCh. 5 - Prob. 5.39PCh. 5 - Prob. 5.40PCh. 5 - A 1-M solution of boric acid, H3BO3 , is...Ch. 5 - Prob. 5.42PCh. 5 - Prob. 5.43PCh. 5 - Prob. 5.44PCh. 5 - Prob. 5.45PCh. 5 - Prob. 5.46PCh. 5 - Prob. 5.47PCh. 5 - Prob. 5.49PCh. 5 - Prob. 5.50PCh. 5 - Prob. 5.54PCh. 5 - What is the range in tissue of the beta particles...Ch. 5 - Prob. 5.56P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Question: The radionuclide Tc-99m is a gamma photon emitter. The emitted gamma photonenergy is 141 keV. The scintillation crystal in a Gamma camera will convert the single gammaphoton to a burst of visible photons. Assuming the generated visible photons wavelength is 550nm, calculate how many visible 550-nm photons will have the same amount of energy as a single141-keV gamma photon?arrow_forwardIn a diagnostic x-ray procedure, 5.25×1010 photons are absorbed by tissue with a mass of 0.590 kg. The x-ray wavelength is 2.00×10−2 nm. A) What is the total energy absorbed by the tissue? Express your answer in millijoules. B) What is the equivalent dose in rem? Express your answer in rem.arrow_forwardGamma-ray detectors like the one described in the preceding problem often use calorimetry to determine gamma-ray energies. Suppose a beam of 100-MeV gamma rays strikes a target with a mass of 2.5 kg and specifi c heat 430 J/(kg # K). How many gamma rays are needed to raise the target’s temperature by 10 mK?arrow_forward
- 1. A point source of Co-60 gamma rays emits qual number of photons of 1.17 and 1.33 MeV, giving a flux density of 5.7 × 10⁹ photons/cm² sec at a specified location. What is the energy flux density there, expressed in erg/cm² sec and in J/m² min?arrow_forwardCompare the wavelength of 1.0-MeV gamma-ray photon with that of a neutron having the same kinetic energy. (for a neutron, mc² = 939 MeV)arrow_forwardAlpha particles of kinetic energy 5.4 MeV are incident at a rate of 3.2 x 107 per second on a copper foil of thickness 3.2 x 10-6 m. A circular detector of diameter 1.0 cm is placed 13 cm from the foil at an angle of 30° with the direction of the incident alpha particles. At what rate does the detector measure scattered alpha particles? (The molar mass of copper is 63.5 g/mol and its density is 8.9 g/cm³.) Additional Materials Bookarrow_forward
- The mass attenuation coefficient of copper is 0.0589 cm2/g for 1.0-MeV photons. The intensity of 1.0-MeV X-ray photons in a narrow beam is reduced to what fraction by a slab of copper 1 cm thick? The density of copper is 8.9 g/cm3arrow_forwardIn a diagnostic x-ray procedure, 5.00 * 1010 photons are absorbed by tissue with a mass of 0.600 kg. The x-ray wavelength is 0.0200 nm. (a) What is the total energy absorbed by the tissue? (b) What is the equivalent dose in rem?arrow_forwardThe mean free path length of a 0.7-MeV photon in lead is closest to which of the following? (a)0.1039 cm (b)0.6697 cm (c)0.7038 cm (d)1.1394 cm (e)0.8776 cmarrow_forward
- A light detector has an area of 3.1m2 and absorbs 53.9% of the incident light, which is at wavelength 682.3nm. The detector faces an isotropic source, 2.1m from the source. If the detector absorbs photons at the rate of exactly 6photons/s , at what rate( in photons/s) does the emitter emit light?arrow_forwardCompton scattering occurs for 0.662 MeV gamma rays. If a photon is dispersed at an angle of 60.0 degrees, what is its energy?arrow_forwardAlpha particles of kinetic energy 6.9M V are incident at a rate of 3.1x 10" per second on a copper foil of thickness 3.1 x 10-m. A circular detector of diameter 1.0cm is placed 13cm from the foil at an angle of 30° with the direction of the incident alpha particles. At what rate does the detector measure scattered alpha particles? (The molar mass of copper is 63.5 and its density is 8.9em-)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning